Targeting the GRPR with Radiolabeled NeoB for Theranostic Purposes

Simone Dalm

PI Radiotracer Interactions Group

Dept of Radiology & Nuclear Medicine

🙊 s.dalm@erasmusmc.nl

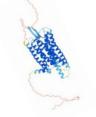
For use by Belnuc only, as part of lecture provided

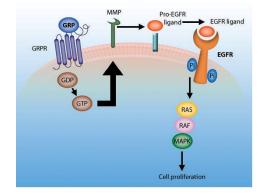
Please contact me if you want to use the slides for other purposes

Erasmus

Date: Sept '23

Gastrin Releasing Peptide Receptor (GRPR)

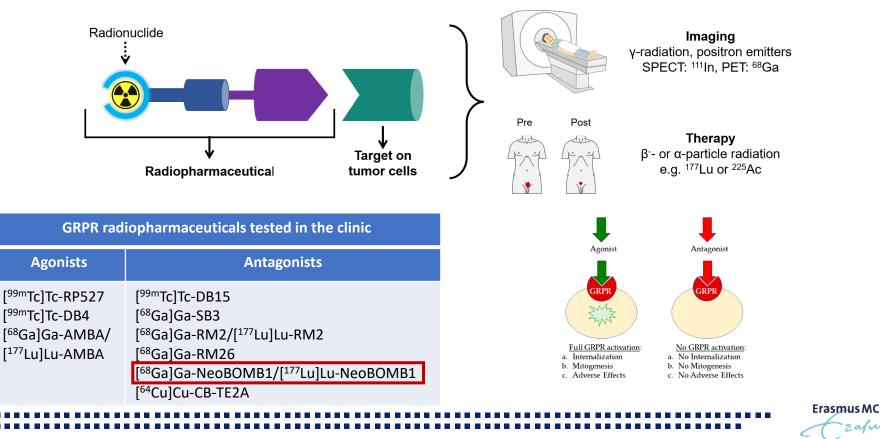

- Family of Bombesin receptors (BBR)
- BB2R
- Glycosylated 7-transmembrane G-protein coupled receptor
- Phospholipase C signaling pathway


Physiological expression

• Pancreas, gastric, respiratory, and nervous systems, endocrine glands and muscle

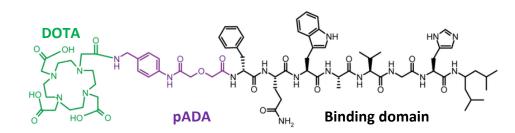
Physiological function

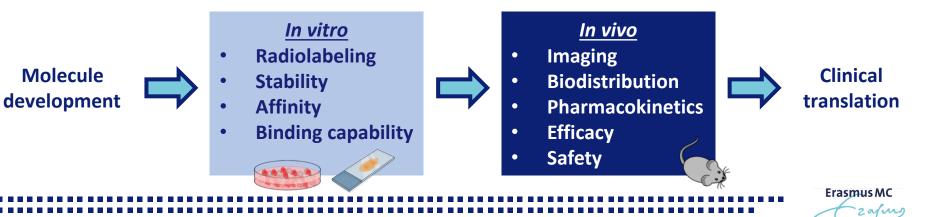
 Smooth muscle contraction, secretion of gastric acid, regulation of body temperature, glucose intake, secretion of neuropeptides and hormones and regulation of synaptic transmission



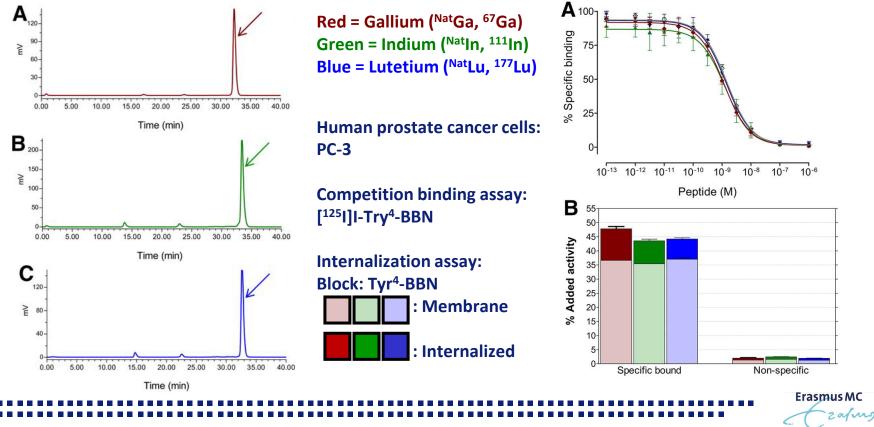
Overexpression in various cancers including prostate cancer, breast cancer, lung cancer, gastrointestinal stromal tumors (GIST), pancreatic cancer and neuroblastomas/glioblastomas

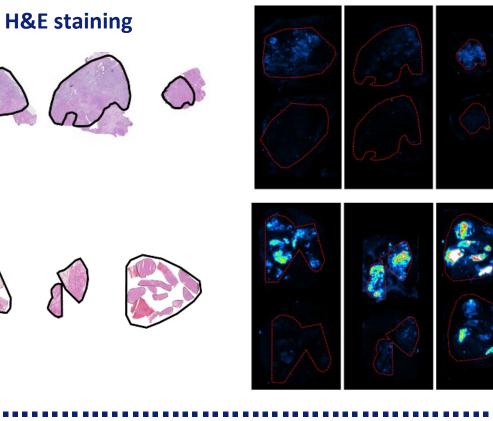
GRPR-mediated Radionuclide Theranostics


zalus


Mansi et al. Cancers 2021

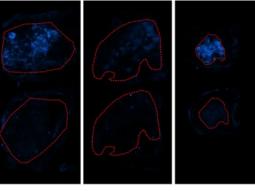
NeoBOMB1, NeoB

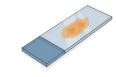

- Antagonist
- DOTA-coupled
- ⁶⁸Ga, ¹¹¹In and ¹⁷⁷Lu-labeled NeoB
- Mostly studied in Prostate Cancer, Breast Cancer and GIST (models)
- Preclinical In vitro and In vivo evaluations
- Clinical studies ongoing



Stability, Affinity and Binding Capability

Nock et al. J Nucl Med 2017





GIST

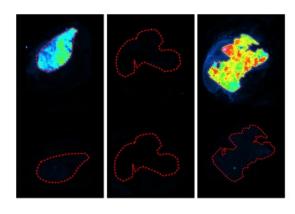
- block

+ block (Tyr⁴-BBN)

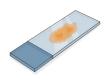
- block

+ block (Tyr⁴-BBN)

Unpublished data


Binding Capability

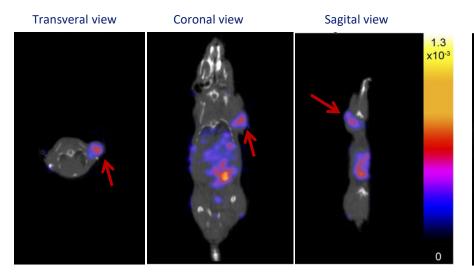
H&E staining

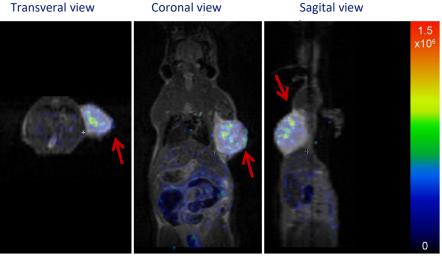


+ block (Tyr⁴-BBN)

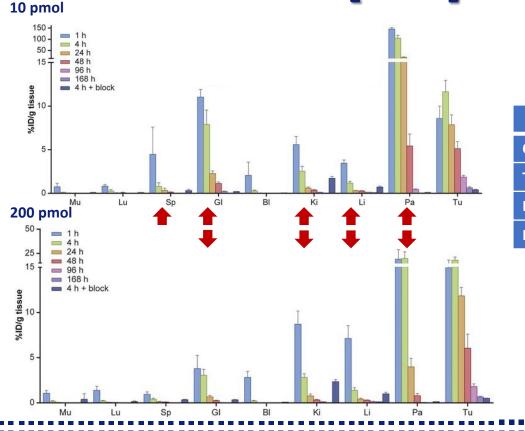
Erasmus MC

zalus


Unpublished data

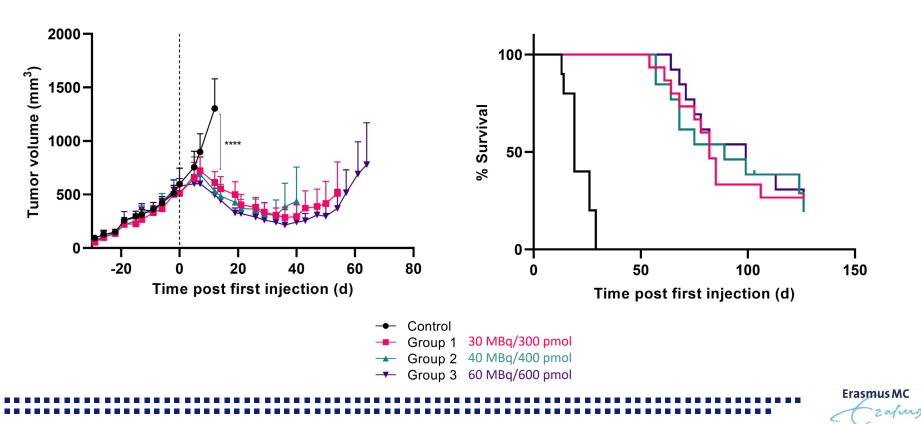

In Vivo Imaging

PET/CT 13 MBq/230 pmol [⁶⁸Ga]Ga-NeoB

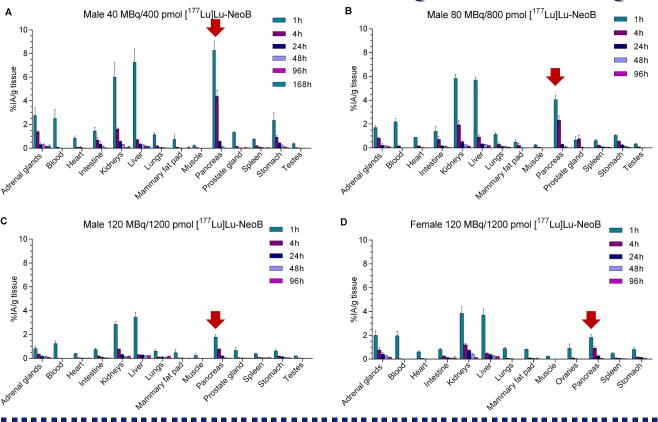

Erasmus MC Cafung

Dalm SU et al. J Nucl Med 2017

Biodistribution [177Lu]Lu-NeoB


			D(tumor)/D(organ)		
Organ	10 pmol	200 pmol	10 pmol	200 pmol	
Tumor	435	570	-	-	
Kidneys	58	57	7,5	10	
Pancreas	1393	265	0,31	2.15	

Dalm SU et al. J Nucl Med 2017


Therapeutic Efficacy [177Lu]Lu-NeoB

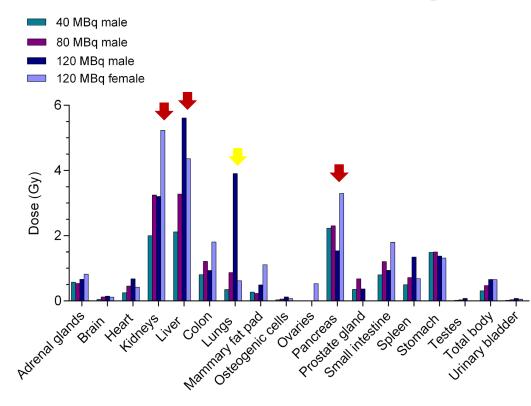
Verhoeven M et al. Mol Imaging Biol 2023

Extensive Dosimetry and Safety

Non-tumor bearing mice

Male vs Female

Dose and schedule: 40 MBq/400 pmol 80 MBq/800 pmol 120 MBq/1200 pmol


3 injections, 1 x per week

Direct, early and late organ toxicity

Ruigrok et al. Eur J Nucl Med Mol Imaging 2022

Extensive Dosimetry and Safety

No relevant changes in weight

Histopathology:

Week 5:

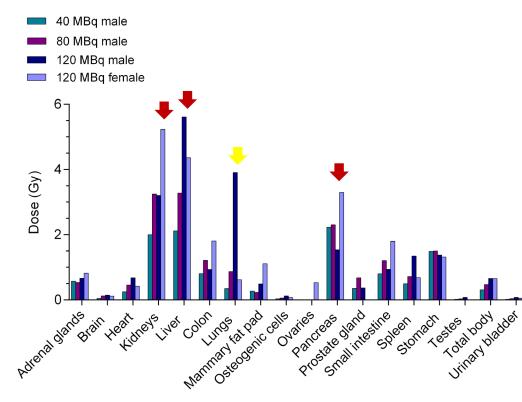
Cytoplasmic vacuolation of urothelial cells in bladder (with inflammatory cell infiltrates in the submucosa)

Non-tumor

bearing mice

Week 19:

 Hydronephroses (with ureteral dilatation), mild nephropathy


Week 43:

- Marked or severe hydronephrosis (with associated occasional mild nephropathy and ureteral dilation)
- Marked ovarian atrophy, uterine and vaginal atrophy

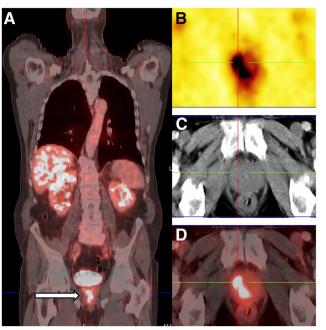
Ruigrok et al. Eur J Nucl Med Mol Imaging 2022

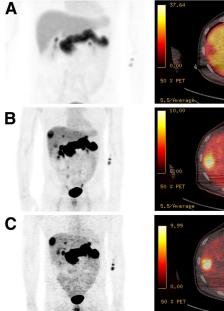
Extensive Dosimetry and Safety

Non-tumor bearing mice

Blood analysis:

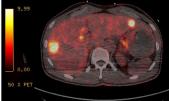
- Transient drop in WBC (week 5)
- Abnormalities in urea nitrogen level




Ruigrok et al. Eur J Nucl Med Mol Imaging 2022

First Clinical Studies with [68Ga]Ga-NeoB

Prostate Cancer


GIST

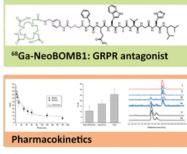
37.64 0.00 50 % PET 5.5/Rverage

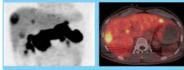
55 y-old male patient, GIST of ileum and histologically verified liver metastases

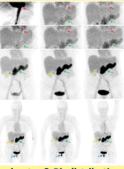
69 y-old male patient Gleason score: 8 [4+4], PSA: 6.33 ng/mL

Erasmus MC

Nock et al. J Nucl Med 2017, Gruber et al. J Nucl Med 2020


Clinical Translation


Row	Saved	Status	Study Title	Conditions	Interventions	Locations
1		Completed	MITIGATE-NeoBOM: A Study to Evaluate 68Ga- NeoBOMB1 in Patients With Advanced TKI- treated GIST Using PET/CT	Gastrointestinal Stromal Tumors	 Drug: 68Ga- NeoBOMB1, 2-vial kit 	Medical University Innsbruck Innsbruck, Tirol, Austria
2		Active, not recruiting	Gallium Ga 68 DOTA- NeoBOMB1 and Gallium Ga 68 PSMA-R2 PET/MRI in Diagnosing Participants With Recurrent Prostate Cancer	 Prostate Adenocarcinoma PSA Progression Recurrent Prostate Carcinoma 	 Drug: Gallium Ga 68 DOTA-NeoBOMB1 Device: Gallium Ga 68 PSMA-R2 	Stanford Cancer Institute Palo Alto Palo Alto, California, United States
3		Terminated Has Results	[68Ga] -NeoBOMB1 Imaging in Patients With Malignancies Known to Overexpress Gastrin Releasing Peptide Receptor (GRPR)	 Breast Cancer Prostate Cancer Colorectal Cancer (and 2 more) 	• Drug: [68Ga]- NeoBOMB1	 Medical University Innsbruck Department of Nuclear Medicine Innsbruck, Austria University of Grenoble - Hopital Michallon, Service de Medicine Nucleaire La Tronche, France University of Bordeaux, Unite TEP RECHERCHE - Hopital Xavier Arnozan Pessac, France


MITIGATE

⁶⁸Ga-NeoBOMB1

afety, Pharmacokinetics and preliminary Tumour Targeting

Dosimetry & Biodistribution

Preliminary Tumor Targeting

Clinical Translation

Row	Saved	Status	Study Title	Conditions	Interventions	Locations
1		Completed	MITIGATE-NeoBOM: A Study to Evaluate 68Ga- NeoBOMB1 in Patients With Advanced TKI- treated GIST Using PET/CT	Gastrointestinal Stromal Tumors	• Drug: 68Ga- NeoBOMB1, 2-vial kit	Medical University Innsbruck Innsbruck, Tirol, Austria
2		Active, not recruiting	Gallium Ga 68 DOTA- NeoBOMB1 and Gallium Ga 68 PSMA-R2 PET/MRI in Diagnosing Participants With Recurrent Prostate Cancer	 Prostate Adenocarcinoma PSA Progression Recurrent Prostate Carcinoma 	 Drug: Gallium Ga 68 DOTA-NeoBOMB1 Device: Gallium Ga 68 PSMA-R2 	Stanford Cancer Institute Palo Alto Palo Alto, California, United States
3		Terminated Has Results	[68Ga]-NeoBOMB1 Imaging in Patients With Malignancies Known to Overexpress Gastrin Releasing Peptide Receptor (GRPR)	 Breast Cancer Prostate Cancer Colorectal Cancer (and 2 more) 	Drug: [68Ga]- NeoBOMB1	 Medical University Innsbruck Department of Nuclear Medicine Innsbruck, Austria University of Grenoble - Hopital Michallon, Service de Medicine Nucleaire La Tronche, France University of Bordeaux, Unite TEP RECHERCHE - Hopital Xavier Arnozan Pessac, France

KEY POINTS

QUESTION: Is the application of ⁶⁸Ga-NeoBOMB1 safe for PET imaging applications, and what are the pharmacokinetics, radiation dose, and imaging properties of this novel radiopharmaceutical?

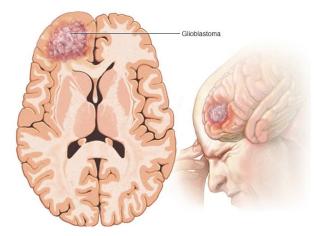
PERTINENT FINDINGS: This study was designed as a phase I/IIa clinical trial, and the outcome of the first 6 patients is reported. ⁶⁸Ga-NeoBOMB1 showed an excellent safety profile, suitable pharmacokinetics, low radiation dose, and promising targeting properties in GIST tumors.

IMPLICATIONS FOR PATIENT CARE: ⁶⁸Ga-NeoBOMB1 is a promising radiotracer suitable for PET imaging of GRPR expression in oncologic patients and opens a pathway for translation into a therapeutic approach

Clinical Translation

Row	Saved	Status	Study Title	Co	ondition	s	Interventions	Locations				
1		Completed	MITIGATE-NeoBOM: A Study to Evaluate 68Ga- NeoBOMB1 in Patients With Advanced TKI- treated GIST Using PET/CT	Gastro Strom	ointestina nal Tumor		 Drug: 68Ga- NeoBOMB1, 2-vial kit 	Medical University Innsbruck Innsbruck, Tirol, Austria				
2		Active, not recruiting	Gallium Ga 68 DOTA- NeoBOMB1 and Gallium Ga 68 PSMA-R2 PET/MRI in Diagnosing	Row Sa	aved	Status		Study Title	11	Conditions	Interventions	Locations
		-	Participants With Recurrent Prostate Cancer	1	Re	cruiting	Pilot Trial to Assess 680	a Bombesin PET/CT (NeoB) Imaging for St	aging of Breast Cancer	Breast Cancer	 Drug: [68Ga]GA- NeoB 	 St Vincent's Hospital Sydney, New South Wales, Australia
3		Terminated Has Results	[68Ga] -NeoBOMB1 Imaging in Patients With Malignancies Known to Overexpress Gastrin Releasing Peptide Receptor (GRPR)	2		vt yet cruiting	Dose Finding Study of [GBM.	177Lu]Lu- NeoB in Combination With RT and	1 TMZ in Newly Diagnosed	Newly Diagnosed Glioblastoma	 Drug: [177Lu]Lu- NeoB Drug: [68Ga]Ga- NeoB Other: Temozolomide 	
				3		ot yet cruiting	[177Lu]Lu-NeoB in Com GRPR+ Breast Cancer	ibination With Ribociclib and Fulvestrant in F	Participants With ER+, HER2-,	Breast Cancer	 Drug: [68Ga]Ga- NeoB Drug: [177Lu]Lu- NeoB Drug: Ribociclib (and 2 more) 	
				. 4	Re	ecruiting	[177Lu]-NeoB in Patient	s With Advanced Solid Tumors and With [68	3Ga] -NeoB Lesion Uptake	Neoplasms	 Drug: [177Lu]-NeoB Drug: [68Ga]-NeoB 	City of Hope Duarte, California, United States Stanford University Stanford, California, United States John Hopkins University Baltimore, Maryland, United States (and 10 more.)

(and 10 more...)



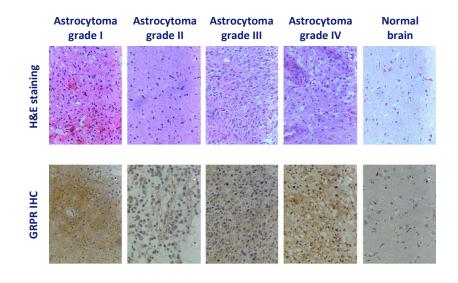
Erasmus MC Calmo

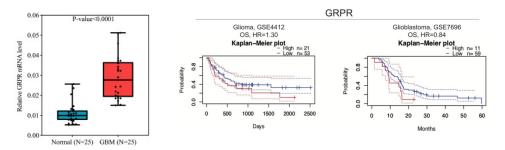
GRPR in Glioblastoma

Glioblastoma

- 77%-81% of all primary malignant CNS tumors (grade IV astrocytomas)
- Incidence rate: 0.59-5 per 100,000
- Median survival: ~14.6 months
- 5-year survival rate: <10 months

Grech et al. Cureus 2020, Flores et al. Brain Res Bull 2010, Cao et al. Cancer Manag Res 2021

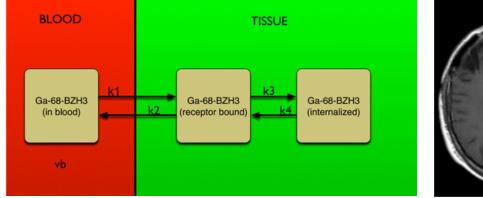

GRPR in Glioblastoma

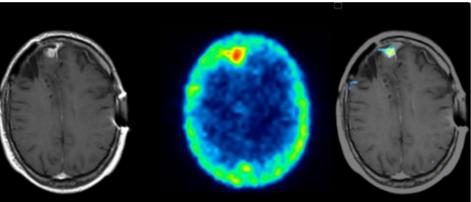

Glioblastoma

- 77%-81% of all primary malignant CNS tumors (grade IV astrocytomas)
- Incidence rate: 0.59-5 per 100,000
- Median survival: ~14.6 months
- 5-year survival rate: <10 months

GRPR

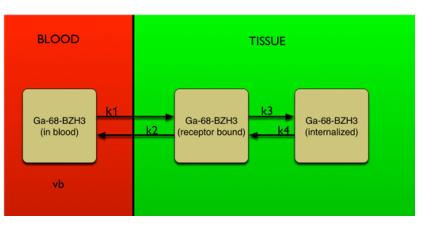
- Stimulates growth and proliferation (autocrine manner)
- GRPR antagonists (e.g. RC-3095 +/- chemotherapies)
- GRPR drug conjugates (e.g. AN-215, dox based)
- GRPR-mediated nuclear imaging of gliomas

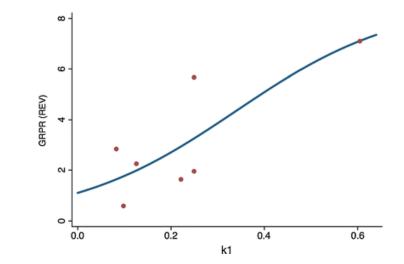

Grech et al. Cureus 2020, Flores et al. Brain Res Bull 2010, Cao et al. Cancer Manag Res 2021


- 7 patients
- $[^{68}Ga]Ga-BZH_3 \rightarrow agonist (binds to all 3 BBR)$
- Focus on dynamics and kinetics
- Compared to gene array data •

Fusion MRI/ **Paramateric** image k1

2 april

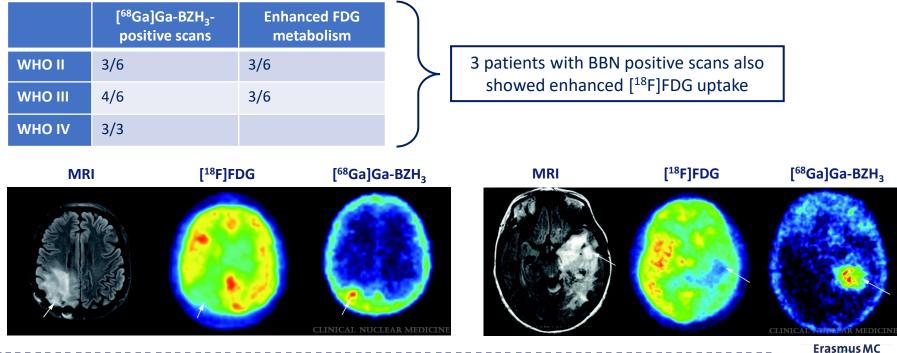



[⁶⁸Ga]Ga-BZH3 PET

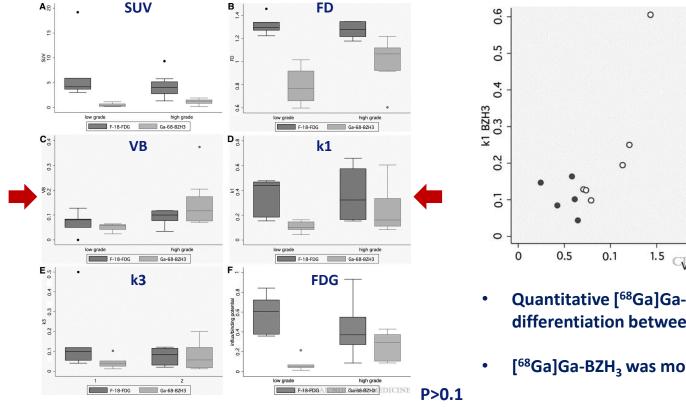
The compartment parameter k1 was correlated with the expression of BB2 (r = 0.89), while k3, reflecting the internalization, revealed no significant correlation. **Erasmus** MC

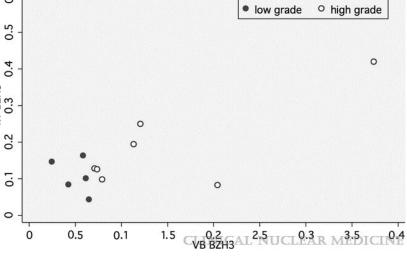
Straus et al. Mol Imaging Biol 2012

- 7 patients
- $[^{68}Ga]Ga-BZH_3 \rightarrow agonist (binds to all 3 BBR)$ •
- Focus on dynamics and kinetics ٠
- Compared to gene array data



2 alm


The compartment parameter k1 was correlated with the expression of BB2 (r = 0.89), while k3, reflecting the internalization, revealed no significant correlation. **Erasmus** MC Straus et al. Mol Imaging Biol 2012


- [¹⁸F]FDG vs [⁶⁸Ga]Ga-BZH₃ in 15 patients (confirmed oligodendrogliomas and astrocytomas)
- Imaging vs Tumor grading

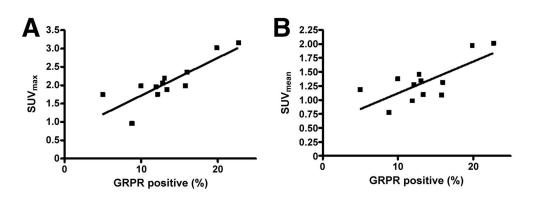
zalus

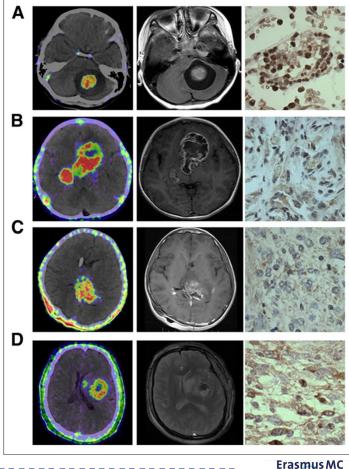
Dimitrakopoulou-Strauss et al. Clin Nucl Med 2011

- Quantitative [⁶⁸Ga]Ga-BZH₃ studies are helpful for differentiation between high- and low-grade tumors
- [⁶⁸Ga]Ga-BZH₃ was more helpful than [¹⁸F]FDG

Dimitrakopoulou-Strauss et al. Clin Nucl Med 2011

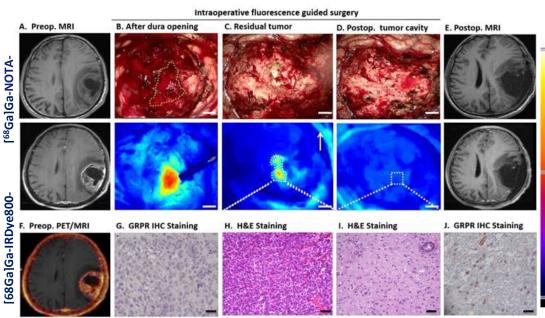
- 4 healthy volunteers, 12 patients (14 lesions)
- [⁶⁸Ga]Ga-NOTA-Aca-BBN(7−14) → <u>agonist</u>


0 1/2	m	ISv/MBq	2/2	mSv/MBg		
Organ	Mean	SD	Organ	Mean	SD	
Adrenals	0.00021	0.00004	/ Pancreas	<mark>0.00105</mark>	<mark>0.00015</mark>	
<mark>Brain</mark>	0.00001	<mark>0.00001</mark>	Red marrow	<mark>0.00098</mark>	<mark>0.00022</mark>	
Breasts	0.00004	0.00002	Osteogenic cells	0.00058	0.00011	
Gallbladder wall	0.00053	0.00013	Skin	0.00050	0.00001	
Lower large intestine wall	0.00566	0.00121	Spleen	0.00032	0.00007	
Small intestine	0.00228	0.00057	Testes	0.01000	_	
Stomach wall	0.00032	0.00001	Thymus	0.00159	0.00177	
Upper large intestine wall	0.00174	0.00044	Thyroid	0.00004	0.00001	
Heart wall	0.00017	0.00001	💊 <mark>Urinary bladder wall</mark>	<mark>0.30700</mark>	<mark>0.35559</mark>	
Kidneys	0.00058	0.00013	Uterus	0.01310	_	
Liver	0.00032	0.00006	Total body	0.00150	0.00029	
1 r Lungs	0.00009	0.00003	ni Effective dose equivalent	0.03350	0.00790	
Muscle	0.00139	0.00025	Effective dose	0.02760	0.00660	
<mark>Ovaries</mark>	<mark>0.00530</mark>	<mark>0.00124</mark>				


Estimated Absorbed BBN Dose in Healthy Volunteers

Erasmus MC

- 4 healthy volunteers, 12 patients (14 lesions)
- [⁶⁸Ga]Ga-NOTA-Aca-BBN(7−14) → <u>agonist</u>
- All lesions visualized
- Correlation with GRPR expression

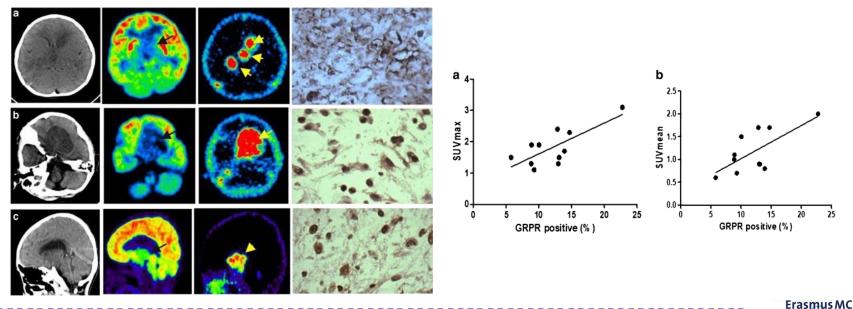


zalm

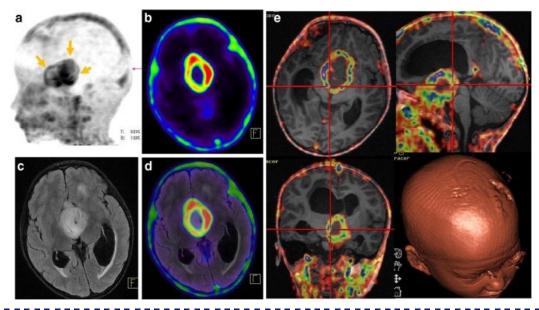
Zhang et al. J Nucl Med 2016

- 14 Glioblastoma patients
- Image guided surgery
- [⁶⁸Ga]Ga-NOTA-BBN (7-14) and [⁶⁸Ga]Ga-IRDye800-NOTA-BBN (7-14)

- Sensitivity: 93.9% (95% Cl 79.8%-99.3%) Specificity: 100% (95% Cl 66.4%-100%)
- The tracer was safe and resection was satisfactory


٠

- No newly developed neurologic deficits
- PFS at 6 months: 80% (2 newly diagnosed patients achieved long PFS)


Li et al. Theranostics 2018

- GRPR-mediated PET/CT and PET/MRI
- 8 Children (11 lesions)
- Optic pathway glioma
- [⁶⁸Ga]Ga-NOTA-Aca-BBN(7-14) scan (4 patients also underwent ¹⁸F-FDG brain PET/CT)

zam

- GRPR-mediated PET/CT and PET/MRI
- 8 Children (11 lesions)
- Optic pathway glioma
- [⁶⁸Ga]Ga-NOTA-Aca-BBN(7-14) scan (4 patients also underwent ¹⁸F-FDG brain PET/CT)

- All lesions detected with [⁶⁸Ga]Ga-NOTA-Aca-BBN(7-14)
- PET/MRI may be helpful for assisting surgery planning in OPG patients

Zhang et al. Eur J Nucl Med Mol Imaging 2019

Targeted Radionuclide Therapy in Glioma Patients

Post-Op

Pre-Op

4 weeks

20 weeks

64 weeks

- [¹³¹I]I-ch81C6 (Tenascin)-targeted therapy
- Median survival increased by 20.6 months for newly diagnosed glioblastomas and 14.5 months for recurrent disease

- Baseline 07.2014 After 1st injection 09.2014 After 2nd injection 11.2014 After four injections Follow-up 08.2017
- 32-y-old woman
- Astrocytoma WHO grade II, conversion into a secondary Glioblastoma
- 4 cycles of [²¹³Bi]Bi-DOTA-substance P
- Tumor shrinkage: 32%

Reardon et al, J Nucl Med 2006, Królicki et al, Eur J Nucl Med Mol Imaging 2019

Ongoing studies

Row	Saved	Status	Study Title	Conditions	Interventions	Locations
1		Recruiting	Pilot Trial to Assess 68Ga Bombesin PET/CT (NeoB) Imaging for Staging of Breast Cancer	Breast Cancer	 Drug: [68Ga]GA- NeoB 	 St Vincent's Hospital Sydney, New South Wales, Australia
2		Not yet recruiting	Dose Finding Study of [177Lu]Lu- NeoB in Combination With RT and TMZ in Newly Diagnosed <u>GBM</u> .	Newly Diagnosed Glioblastoma	 Drug: [177Lu]Lu- NeoB Drug: [68Ga]Ga- NeoB Other: Temozolomide 	

Patients enrolled into this trial will be treated for up to 32 weeks with the standard regimen TMZ and RT, combined with [177Lu]Lu-NeoB every 4 weeks. In exceptional cases, where patients tolerate and benefit from [177Lu]Lu-NeoB, they can receive up to 10 dose administrations, resulting in a treatment duration of up to 37 weeks. During this period, regular safety and efficacy assessments are planned on a weekly basis. The primary objective of this trial is to estimate the recommended dose of [177Lu]Lu-NeoB in combination with TMZ and RT in participants with newly diagnosed GBM and to characterize the safety and tolerability of this treatment. For this reason, patients will be enrolled and treated in cohorts with increasing dose levels and the totality of available data will be used to define the recommended dose. In an expansion cohort, additional patients will be treated to further characterize the safety and tolerability, as well as to collect preliminary efficacy data from this cohort. Contrast enhanced MRI assessments are recommended to be repeated every 8 weeks and patient reported outcomes (PRO) questionnaires will be used to assess the effect of the study treatment on patient reported symptoms and tolerability. Following treatment, all patients will be followed for up to 5 additional years for safety, progression of disease and survival.

Erasmus MC

Acknowledgements

RADIOTRACER INTERACTIONS GROUP

Erasmus MC, Dept of Radiology & Nuclear Medicine Radiotracer Interactions Group Radiochemistry group

Studies were performed in collaboration with: Dr. Maina and Dr. Nock from INSRATES, NCSR, Demokritos, Greece Advanced Accelerator Applications, a Novartis Company (funding)

