Glioblastoma work-up and collaboration with the nuclear medicine department

Wietse Geens, MD Neurosurgery and Neuro-oncology department UZ Brussels

Introduction

- Glial cells = supportive cells in the brain
 - 3 types
 - Astrocytes
 - Oligodendrocytes
 - Microglia
- \rightarrow ± 90% of brain

- Glioma is a neoplastic transformation of glial cells
 - → Refers to a group of tumors

- Incidence of glioma in Belgium: ± 7 per 100.000 inhabitants
- \rightarrow 600-700 new patients per year

Glioma classification

- WHO classification 2021: 3 grades (2-4) based on molecular markers
- Grade 2: 'diffuse' Astrocytoma/Oligodendroglioma
- Grade 3: 'anaplastic' Astrocytoma/Oligodendroglioma
- Grade 4: Astrocytoma/Glioblastoma

Prognosis 👢

Symptomatology

Diagnosis of glioblastoma

• L: lymphoma (this appearance is more common in immunocompromised)

Diagnosis of glioblastoma

- Some cases remain doubtful
 - 1. No contrast leakage (mostly lower grade gliomas)
 - 2. Small contrast-enhancing nodule

FET/MET-PET

Amino-acid (AA) PET: principles

- Uptake in glioma cells through LAT-1/2 transporter
 - Overexpression in glioma cells
- 1. Static AA-PET
 - Metabolic Tumor Volume (MTV)
 - Tumor-to-background ratio (TBR)
 - TBRmax
 - TBRmean
- 2. Dynamic AA-PET
 - Static parameters
 - Slope evaluation (time activity curve)
 - Time-to-Peak (TTP)

Treatment of glioblastoma

- 1. Surgical resection
 - Based on pre-operative MRI
 - \rightarrow GOAL: maximal SAFE resection
 - Different subregions in tumor
 - 1. Necrosis
 - 2. Contrast-enhancing tumor (CE)
 - 3. Edema + non-contrastenhancing tumor (NCE)

VISIBLE

TUMOR

Potential use of AA-PET in neurosurgery

- 1008 primary GBM patients retrospectively analysed
- Based on MR imaging only
- Surgical intervention prognostic?
- 4 subclasses highly prognostic
- Conclusion: lower residual tumor volume (RTV) = higher survival
- Uncertainty about the quantification of NCE
 - No method mentioned in the article

RANO categories for extent of resection in glioblastoma					
Class 1: supramaximal CE resection	Class 2: maximal CE resection		Class 3: submaximal CE resection		Class 4: biopsy
	Class 2A: complete CE resection	Class 2B: near total CE resection	Class 3A: subtotal CE resection	Class 3B: partial CE resection	
0 cm ³ CE + ≤5 cm ³ nCE	0 cm ³ CE + >5 cm ³ nCE	≤1 cm ³ CE	≤5 cm ³ CE	>5 cm ³ CE	No reduction of tumor volume

Edema + non-contrastenhancing tumor \rightarrow Contains tumor infiltration

Reminder: Yellow = Necrosis + CE Purple = Edema + NCE

Potential use in neurosurgery

- No information regarding tumoral infiltration in previous trials investigating extent of resection
- MTV before adjuvant treatment highly prognostic
- → Classes should be redefined with AA-data incorporated
- → Need for prospective studies with combined PET/MRI evaluation

Potential use in neurosurgery

- Biopsy planning
 - Identification of highly malignant foci
 - Particularly of interest in lower lower-grade gliomas

Conclusion: potential use in neurosurgery

- 1. Guiding surgical resection
 - Higher resection grade = **Higher** survival
 - \rightarrow Minimize postoperative residual tumor volume

CAVE

- Higher postoperative deficits = **worse** prognosis
 - \rightarrow Finding a good balance is essential
- 2. Guiding biopsy location
 - Preferably lesion with high PET activity = aggressive portion of tumor

Treatment of glioblastoma (unchanged since 2005)

Prognostication using amino-acid PET

Longer OS

- Response assessment to radiochemotherapy (RCT) vital
 - Allows for adequate patient counseling
 - Although not relevant in glioblastoma, may allow for an earlier therapy adaptation
- Detection of treatment response after RCT
 - Static PET
 - > 10% decrease in TBRmax> 5% decrease in TBRmean
 - Dynamic PET
 - Type 1/2 activity curve after RCT: longer PFS

Clinical case 1

- 68 year old patient
- Grade 4 GBM
- Treatment with adjuvant chemotherapy
- Tumor progression?

Use in neuro-oncology: pseudoprogression

= transient increase of contrast-enhancement(CE) on MRI following anti-tumor treatment

Follow-up MRI will show gradual decrease of CE

- Occurs classically after completion of radiotherapy
 - Mostly within 3 months
 - Might be associated with symptoms
- Immunotherapy
 - Occurs faster after treatment initiation
- TBRmax < 2.3 = pseudoprogression sens (100%), spec (91%)

Galldiks et al., EJNMMI 2015

Clinical case 2

- 56 year old patient
- Grade 4 GBM

Pre-Treatment

- Progression after chemoradiation therapy
- Inclusion in clinical trial
 - Anti-angiogenesis AB + chemotherapy

Use in neuro-oncology: pseudoresponse

- Decreased CE on MRI
 - Associated with anti-VEGF therapy
 - Decreased vascular permeability
 - Occurs as fast as 1-2 after treatment initiation
 - Progression as non-enhancing tumor
 - Durable anti-tumor effect in certain patients
- Amino-acid PET
 - Identification of potential responders
 - Type 1 or 2 TAC = better response
 - Detects tumor progression before MRI
 - Prediction of treatment failure

Patient 7; Metabolic Non-Responder; PFS 3 mo, OS 3.5 mo

Kinetic pattern type 1 before BEV/IR TTP = 45 min

Kinetic pattern type 3 before BEV/IR TTP = 13 min

Take home messages

- 1. Possibility to **distinguish** between tumor grades and types
 - \rightarrow Glioblastoma vs. lower-grade gliomas
- 2. Amino acid PET may be used for **more accurate** tumor delineation preoperatively
 - \rightarrow Higher resection grade
 - \rightarrow Longer survival
 - \rightarrow Need for prospective research
- 3. Prognostication of patients with amino acid PET
- 4. Sensitive to diagnose treatment-related changes
 - → prevents ineffective treatment from being continued OR prevents effective treatment from being halted early

