¹⁸F-FET and ⁶⁸Ga-Dotatate-PET/CT in the management of brain tumors Donatienne Van Weehaeghe, MD, PhD # ¹⁸F-FET-PET/CT - Uptake mechanism - Indications - Analysis - ▶ Pitfalls # ¹⁸F-FET-PET/CT - Uptake mechanism - Indications - Analysis - ▶ Pitfalls # Uptake mechanism # Uptake mechanism # ¹⁸F-FET-PET/CT - Uptake mechanism - **Indications** - Analysis - ▶ Pitfalls Dose: 185 - 200 MBq 0-40 min When? Dynamic scan to determine grade Ischaemia with haemorrhagic transformation Glioblastoma Chan et al. Journal of clinical neuroscience 2018. Rosen et al. Scientific reports 2021. Cave flare phenomen # ¹⁸F-FET-PET/CT - Uptake mechanism - Indications - **▶** Analysis - ▶ Pitfalls #### **Metabolic index** $\mathrm{SUV}_{\mathrm{max}}$ / $\mathrm{Bg}_{\mathrm{mean}}$ OR SUV_{mean}/Bg_{mean} | Table 1 | Commonly | used thresholds for | r amino acid PET, | validated histologically | or clinically, | according to the clinical question | | |---------|----------|---------------------|-------------------|--------------------------|----------------|------------------------------------|--| |---------|----------|---------------------|-------------------|--------------------------|----------------|------------------------------------|--| | Clinical question | Tracer | Method | | Threshold | Referenc | |--|------------|--|-------------------|-------------------------|-----------------| | Differentiation between neoplastic and non-neoplastic tissue | FET TBRmax | | | 2.5 | [45] | | | | TBRmean | | 1.9 | | | | MET | TBRmax | | 1.3-1.5 | [33, 46] | | | FDOPA | _ | | n.a. | | | Tumour grading (grade I/II versus III/IV glioma) | FET | TBRmean | | | [45, 47,
48] | | | | TBRmax | | | | | | | TTP TAC pattem (I, II, III) | | <35 min | | | | | | | Pattern II, III | | | 'umour extent | FET | TBR | | 1.6 | [32] | | | MET | Γ TBR | | 1.3 | [49] | | | FDOPA | TBR | | 2.0 | [50] | | Tumour recurrence | FET | TBRmean (circular ROI diameter 1.6 cm) | | 2.0 | [51] | | | | TTP | | <45 min | | | | MET | TBRmax | | 1.6 | [52] | | | FDOPA | TSRmax | | | [53] | | | | TSRmean | | 2.1
1.8 | [0.0] | | Malignant transformation of grade I/II glioma | FET | TBRmax | | >33% increase | [54] | | | | TBRmean | | >13% increase | | | | | TTP change in ROI >1.6 brain | | 6 min decrease | | | Differentiation between early pseudoprogression and true progression | FET | TBRmax | | 2.3 | [55] | | Differentiation between late pseudoprogression and true | FET | TBRmax
TBRmean | | 1.9 | [56] | | progression | | | | 1.9 | | | dentification of responders in treatment response evaluation | FET | Radiochemotherapy (7–10 days) | TBRmax
TBRmean | | [57–59] | | | | Bevacizumab/irinotecan
(4-12 weeks) | BTV | >45% decrease | | | | MET | Temozolomide | TBRmax | Stable or
decreasing | [60] | | | FDOPA | Bevacizumab (2 weeks) | BTV | >35% decrease
<18 mL | [29] | TBR tumour to background ratio, TTP time to peak, TAC time-activity curve, TSR tumour to striatum ratio, ROI region of interest #### **General cut-off** $$SUV_{max} / Bg_{mean} = 1.6 - 1.8$$ #### **Dynamic analysis** Isocontour on $\mathrm{SUV}_{\mathrm{max}}$ with volume 1-2 ml OR VOI with fixed diameter 1.6 cm on SUV_{max} #### **Dynamic analysis** Isocontour on $\mathrm{SUV}_{\mathrm{max}}$ with volume 1-2 ml OR VOI with fixed diameter 1.6 cm on SUV_{max} # ¹⁸F-FET-PET/CT - Uptake mechanism - Indications - Analysis - **▶** Pitfalls # Pitfalls: pineal body, choroid plexus Cecchin et al. Seminars in nuclear medicine 2021. # Pitfalls: pressure Cecchin et al. Seminars in nuclear medicine 2021. ## Pitfalls: recent epilepsy ## Pitfalls: developmentar venous anomaly # Pitfalls: perioperative infarct #### Pitfalls: abcess Cecchin et al. Seminars in nuclear medicine 2021. #### Pitfalls: TAC movement ## 68Ga-Dotatate-PET/CT - Uptake mechanism - Indications - Analysis - Pitfalls ## 68Ga-Dotatate-PET/CT - Uptake mechanism - Indications - Analysis - Pitfalls ## Uptake mechanism ## 68Ga-Dotatate-PET/CT - Uptake mechanism - **Indications** - Analysis - Pitfalls Dose: 100 - 200 MBq | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for
resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | ⁶⁸ Ga-DOTATOC PET delivers additional information on tumor extent for radio-therapy target definition ^{66,57,64,65} | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | ⁶⁸ Ga-DOTATOC PET delivers additional information on tumor extent for radio-
therapy target definition ^{56,57,64,65} | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | Negative Positive | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | ⁶⁸ Ga-DOTATOC PET delivers additional information on tumor extent for radio-therapy target definition ^{56,57,64,65} | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | #### ⁶⁸Ga-Dotatate-PET/CT: Uptake mechanism | Indications | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for
resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | 68Ga-DOTATOC PET delivers additional
information on tumor extent for radio-
therapy target definition 56,57,64,65 | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | ⁶⁸ Ga-DOTATOC PET delivers additional information on tumor extent for radio-therapy target definition ^{56,57,64,65} | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment
monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | Milker-Zabel et al. Internation journal of radiation oncology*biology*physics 2006. | Clinical Indication | PET Ligands for Somatostatin
Receptors | Amino Acid PET Tracers | Other PET Tracers | |---|--|--|---| | Detection of meningioma tissue/
differential diagnosis | ⁶⁸ Ga-DOTATOC and ⁶⁸ Ga-DOTATATE
PET may add valuable diagnostic
information ^{24,53} | na | na | | Meningioma grading | ⁶⁸ Ga-DOTATATE binding correlates
with tumor growth rate in WHO grades
I and II meningiomas ³⁵ | ¹¹ C-MET correlates with proliferative activity, ⁵⁴ but data on grading are controversial. ^{34,55} Static and dynamic ¹⁸ F-FET PET may provide additional information for meningioma grading ³² | ¹¹ C-choline seems to
be helpful for menin-
gioma grading. ⁴¹
¹¹ C-acetate seems not
to be helpful ¹⁸ | | Delineation of tumor extent for resection planning | ⁶⁸ Ga-DOTATATE PET delineates the
meningioma extent better than stand-
ard MRI ^{23,61} | na | na | | Delineation of tumor extent for
radiation treatment planning | ⁶⁸ Ga-DOTATOC PET delivers additional information on tumor extent for radio-
therapy target definition ^{56,57,64,65} | ¹¹ C-MET PET significantly
influences GTV delineation in
meningiomas ^{31,59} | na | | Treatment
monitoring | na | ¹¹ C-MET PET allows an earlier
evaluation of treatment effects
than standard imaging. ^{66,67}
Boronated amino acid PET
probes may help to evaluate
treatment effects ³⁸ | na | | Diagnosis of
tumor progression/differentiation
of tumor progression from
posttreatment changes | ⁶⁸ Ga-DOTATOC/ ⁶⁸ Ga-DOTATATE PET
is useful for differentiation between
progression and posttreatment
changes ^{23,24,52} | na | na | Galldiks et al. Neuro-oncology 2017. ## 68Ga-Dotatate-PET/CT cerebellum cerebellum - Uptake mechanism - Indications - **▶** Analysis - Pitfalls # Analysis | | > 2.3 SUVmax | > 0.3 SUVRpit | > 3 SUVRsss | >62.6 SUVRnorm | |-------------|-------------------|-------------------|-------------------|-------------------| | Sensitivity | 98.2% (94.8-99.5) | 79.5% (72.7–85.0) | 86.7% (80.8-91.1) | 80.6% (73.9-85.9) | | Specificity | 56.1% (41.0-70.1) | 87.8% (74.5-94.7) | 80.5% (66.0-89.8) | 70.7% (55.5-82.4) | | PPV | 90.1% (84.8-93.6) | 96.4% (91.7-98.4) | 94.7% (90.0-97.3) | 91.7% (86.1-95.2) | | NPV | 88.5% (71.0-96.0) | 51.4% (40.0-62.8) | 60.0% (46.8-71.9) | 47.5% (35.5-59.8) | | Prevalence | 80.2% (166/207) | 80.2% (166/207) | 80.2% (166/207) | 80.2% (166/207) | # **Analysis** | | > 2.3 SUVmax | > 0.3 SUVRpit | > 3 SUVRsss | > 62.6 SUVRnorm | |-------------|-------------------|-------------------|-------------------|-------------------| | Sensitivity | 98.2% (94.8-99.5) | 79.5% (72.7–85.0) | 86.7% (80.8-91.1) | 80.6% (73.9-85.9) | | Specificity | 56.1% (41.0-70.1) | 87.8% (74.5-94.7) | 80.5% (66.0-89.8) | 70.7% (55.5–82.4) | | PPV | 90.1% (84.8-93.6) | 96.4% (91.7-98.4) | 94.7% (90.0–97.3) | 91.7% (86.1-95.2) | | NPV | 88.5% (71.0-96.0) | 51.4% (40.0-62.8) | 60.0% (46.8-71.9) | 47.5% (35.5–59.8) | | Prevalence | 80.2% (166/207) | 80.2% (166/207) | 80.2% (166/207) | 80.2% (166/207) | ## 68Ga-Dotatate-PET/CT cerebellum cerebellum - Uptake mechanism - Indications - Analysis - **▶** Pitfalls #### **Pitfalls** #### Breast cancer metastasis #### Medulloblastoma (68Ga-Dotanoc) ### **Pitfalls**