

PetCT guided therapy in lymphoma (and myeloma)

Marie Vercruyssen Haematology Departement Institut Jules Bordet – HUB 24.02.2024

S

Over the past several decades, positron emission tomography coupled with computed tomography using 18F-fluorodeoxyglucose (FDG-PET/CT), a tracer of glucose metabolism, has been considered as state-of-the-art imaging and provided the most significant improvement compared to conventional imaging in staging lymphoma

PetCT: what for?

Table 2. FDG Avidity According to WHO Classification				
Histology	No. of Patients	FDG Avid (%)		
HL	489	97-100		
DLBCL	446	97-100		
FL	622	91-100		
Mantle-cell lymphoma	83	100		
Burkitt's lymphoma	24	100		
Marginal zone lymphoma, nodal	14	100		
Lymphoblastic lymphoma	6	100		
Anaplastic large T-cell lymphoma	37	94-100*		
NK/T-cell lymphoma	80	83-100		
Angioimmunoblastic T-cell lymphoma	31	78-100		
Peripheral T-cell lymphoma	93	86-98		
MALT marginal zone lymphoma	227	54-81		
Small lymphocytic lymphoma	49	47-83		
Enteropathy-type T-cell lymphoma	20	67-100		
Marginal zone lymphoma, splenic	13	53-67		
Marginal zone lymphoma, unspecified	12	67		
Mycosis fungoides	24	83-100		
Sezary syndrome	8	100†		
Primary cutaneous anaplastic large T-cell lymphoma	14	40-60		
Lymphomatoid papulosis	2	50		
Subcutaneous panniculitis-like T-cell lymphoma	7	71		
Cutaneous B-cell lymphoma	2	0		

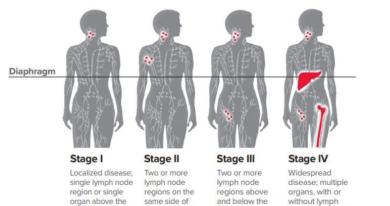
Barrington et al. JCO. 2014

SB

DE BRUX

RS

UNIVE


- Staging?
- Diagnosis? 🗸
- Prognosis? 🗸
- Therapeutic strategies?

SB

PetCT: what for?

- Staging
 - Ann Arbor
 - Bone Marrow involvement
 - Hodgkin Lymphoma
 - N > 800: sens 95% NPV 99,9%

diaphragm

the diaphragm

diaphragm

- Reimbursement criteria! Brentuximab Vedotin in stage IV
- DLBCL \rightarrow controversial
 - High NPV, Low sensibility
 - Still recommended

Voltin et al. An. Oncol. 2018 Azahrani et al. An Oncol. 2016 Kaddu-Mulindwa et al. Eur J. Nucl Med. 2021

node involvement

ES

BRUX

0

R S

N N

ND

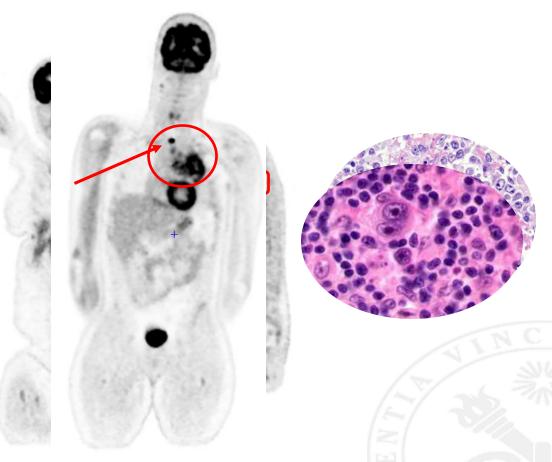
PetCT: what for?

- Diagnosis
 - Richter
 - Chemotherapy era:
 - N=54 Cut off: SUV 5 → Sens, Spe, PPV, and NPV of 91%, 80%, 53%, 97%
 - N=332 SUV 5 → Sens 88%; NPV 92%
 - Bruton kinase inhibitors:

Pathology	N	Median SUV _{max} (range)	SUV _{max} <5	SUV _{max} ≥5 but <10	SUV _{max} ≥10
Richter transformation	25	11.3 (4.6-24.0)	1	10	14
Progressive CLL	18	6.4 (1.8-12.5)	5	10	3
Second malignancy*	9	8.9 (3.1-17.4)	1	5	3
Inflammation ⁺	2	12.6 (7.4-17.7)	0	1	1
Total	54	8.6 (1.8-24.0)	7	26	21

	Sensitivity	Specificity	Positive predictive value	Negative predictive value
SUVmax ≥5	96%	21%	51%	86%
SUVmax ≥6	92%	28%	52%	80%
SUVmax ≥7	84%	45%	57%	76%
SUVmax ≥8	76%	62%	63%	75%
SUVmax ≥9	72%	72%	69%	75%
SUVmax 210	56%	/6%	67%	67%
SUVmax ≥11	52%	83%	72%	67%
SUVmax ≥12	44%	86%	73%	64%
SUVmax ≥13	40%	93%	83%	64%
SUVmax ≥14	28%	93%	78%	63%
SUVmax ≥15	28%	93%	78%	60%

Bruzzi et al. J. Nucl. Med. 2006 Falchi et al. Blood. 2014 Wang et al. Haematol. 2020 DE BRUXELLES


8

RSITÉ

UNIVE

PetCT: what for?

- Diagnosis
 - Richter
 - Guiding biopsy

SB

BRUX

R S

UNIVE

PetCT: what for?

All patients (n = 300) PCNSL (n

- Diagnosis
 - Richter
 - Guiding biospy
 - PCNSL
 - N=300

Age median, years (IQR)	68.0 (60.5, 74.0)	68.0 (61.0
Male/female, n (%)	180 (60.0)/120 (40.0)	148 (58.7)
Localization, n (%)		
Supratentorial	248 (82.7)	211 (83.7)
Infratentorial	41 (13.7)	36 (14.3)
Vitreoretinal*	12 (4.0)	11 (4.4)
CSF**	33 (11.0)	21 (8.3)
Leptomeningeal involvement on MRI	10 (3.3)	6 (2.4)

- DLBCL without systemic features on petCT
- 0% f DLBCL in BM at the BM evaluation if petCT neg!
- 8,3% with low grade lymphoma/MGUS

Jelicic et al. Blood. 2022 Jelicic et al. An. Hematol. 2023 S

PetCT: what for?

• Prognosis/Therapeutic strategies

- Intermediate PetCT
 - Identifying the quality of the response
 - Adapt: limiting toxicities (de-escalate) vs additional treatment (escalate)
 - Identifying early and late responders
- End Of Treatment PetCT
- Pitfalls new immunotherapies

ULB

N

Response assessment Deauville score/Lugano classification

Classification of Response	PET/CT Findings
CR	Deauville score of 1–3 with no new lesions, no bone marrow involvement
PR	Deauville score of 4 or 5 with reduced FDG uptake from baseline, residual bone marrow FDG up- take reduced from baseline, no new lesions
SD	Deauville score of 4 or 5 with no change in FDG uptake from baseline, no change in bone marrow involvement, no new lesions
PD	Deauville score of 4 or 5 with increased FDG uptake from baseline, new or recurrent lesions compati- ble with lymphoma, or appearance of bone marrow involvement based on increased FDG avidity

Meignan et al. Lymph. Leuk. 2009 Cheason et al. JCO. 2014 ULB

É LIBRE DE BRUXELLES

UNIVERSIT

Hodgkin Lymphoma

S

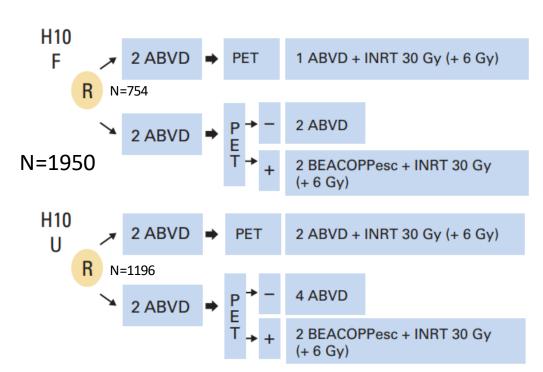
X

S

UNIVER

Hodgkin Lymphoma

- Early petCT assessment has a strong pronostic value
 - High NPV 80-90%, lower PPV 50-55%
 - Lower PFS, OS whether iPET2 +



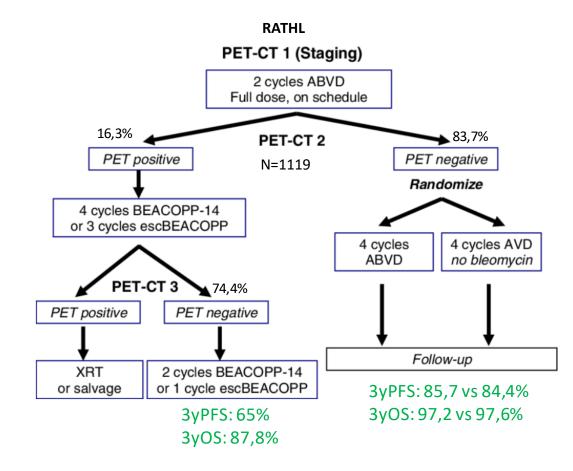
Rossi et al. J Nucl. Med. 2014

ULB

Hodgkin Lymphoma: Early stage

In the Pet-5yPFS: 99 vs 87,1% 5yOS: 100 vs 97,6%

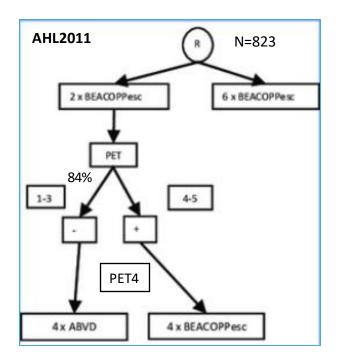
> In the Pet+ (18,8%) 5yPFS: 77,4 vs 90,6% 5yOS: 89,3 vs 96%


In the Pet-5yPFS: 92 vs 89,6% 5yOS: 96,7 vs 98,3%

iPET might overcome classic prognostic factors!

Raemakers et al. JCO. 2014 Andre et al. JCO. 2017

Hodgkin Lymphoma: Advanced stage


Johnson et al. NEJM. 2016

ULB

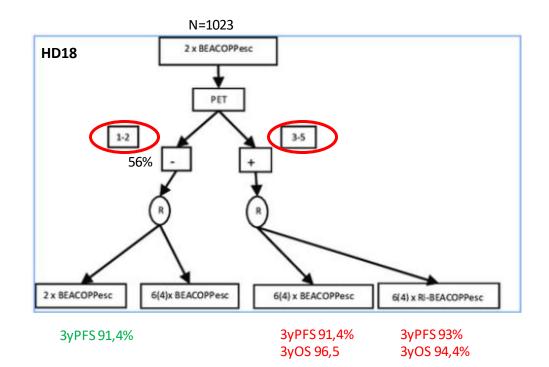
ES

Hodgkin Lymphoma: Advanced stage

In Pet negative (SOC versus Petdriven) 5yPFS: 86,2 vs 85,7% 3yOS: 95,2 vs 96,4%

Whole Pet-driven strategy – 5yPFS 2-4-90,9% 2+4-75,4% 4+46,5%

→ Interesting stratification maybe more relevant than biological markers

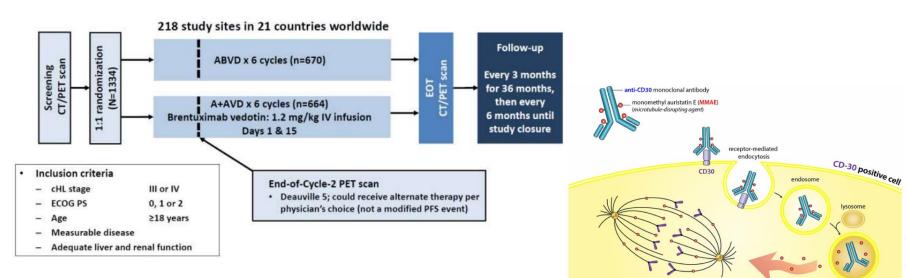

Casanovas et al. Lancet. 2019

ULB

S

Hodgkin Lymphoma: Advanced stage

→ No predictive value of iPET???< Wrong classification of DS3</p>


Will Rogers effect

« When the Okies left Oklahoma and moved to California, they raised the average intelligence level in both states »

Borchmann et al. Lancet. 2017

ECHELON-1

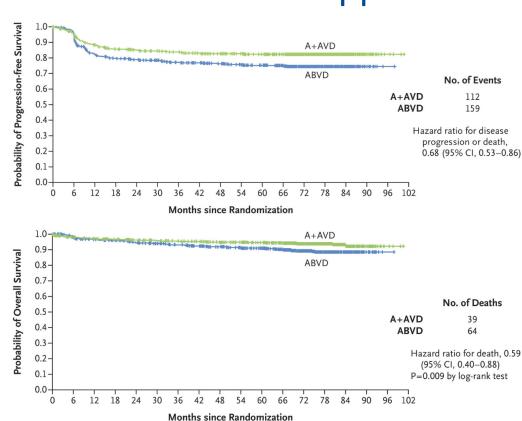
Ansell et al. NEJM. 2022

MMAE is released by lysosomal proteases

z

ULB

E S


_

ULB

E S

_

6yPFS: 82,3 vs 72,5% 6yOS: 93,9 vs 89,4%

iPET wasn't decisive for strategy; 89 vs 86% were negative

6yPFS for iPET2neg: 85 vs 78% 6yPFS for iPET2pos: 61 vs 46%

Ansell et al. NEJM. 2022

0.59 (0.40-0.88)

0.51 (0.29-0.89)

0.83 (0.47-1.47)

0.44 (0.20-0.99)

0.75 (0.47-1.18)

0.40 (0.20-0.80)

0.33 (0.15-0.70)

0.78 (0.47-1.32)

0.37 (0.07-1.91)

0.97 (0.34-2.77) 0.62 (0.33-1.14) 0.48 (0.26-0.88) 96 10 45 1 65 0.48 (0.29-0.80) 0.71 (0.44-1.14) 0.37 (0.17-0.80) 1.18 (0.64-2.19) 0.51 (0.23-1.14) 0.30 (0.14-0.67)

0.70 (0.36-1.37) 0.54 (0.31-0.94) 0.41 (0.14-1.23) 0.43 (0.25-0.73)

0.96 (0.51-1.80)

Subgroup	A+AVD no. of deaths/total	ABVD no. of patients (%)	Hazard Ratio for Death (95)	% CI)
Overall	39/664 (5.9)	64/670 (9.6)		0.59
Age				
<60 yr	19/580 (3.3)	35/568 (6.2)		0.51
≥60 yr	20/84 (24)	29/102 (28.4)		0.83
<45 yr	9/451 (2.0)	18/423 (4.3)		0.44
≥45 yr	30/213 (14.1)	46/247 (18.6)	⊢ ∔∎-∔1	0.75
Geographic region				
Americas	11/261 (4.2)	27/262 (10.3)		0.40
North America	9/250 (3.6)	26/247 (10.5)		0.33
Europe	26/333 (7.8)	32/336 (9.5)		0.78
Asia	2/70 (3)	5/72 (7)		0.37
No. of IPS risk factors				
0 or 1	7/142 (4.9)	7/141 (5.0)		0.97
2 or 3	17/355 (4.8)	26/357 (7.3)		0.62
4-7	15/167 (9.0)	31/172 (18.0)		0.48
Cancer stage at baseline				
	17/227 (7.2)	20/246 (8.1)		0.86
IV	22/425 (5.2)	43/421 (10.2)		0.48
B symptoms at baseline				
Present	30/400 (7.5)	39/381 (10.2)	► : = - ·	0.71
Absent	9/264 (3.4)	25/289 (8.7)		0.37
Extranodal site at baseline				
0	22/217 (10.1)	19/228 (8.3)	·	1.18
1	9/217 (4.1)	17/223 (7.6)	· •	0.51
>1	8/194 (4.1)	25/193 (13.0)		0.30
ECOG performance-status score at baseline				
0	15/376 (4.0)	21/378 (5.6)	⊢	0.70
1	19/260 (7.3)	34/263 (12.9)	⊢ 	0.54
2	5/28 (18)	9/27 (33)		0.41
Sex				
Male	19/378 (5.0)	45/398 (11.3)		0.43
Female	20/286 (7.0)	19/272 (7.0)		0.96
	,			

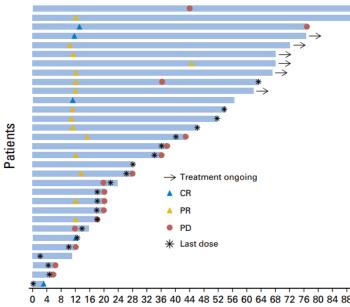
0.1

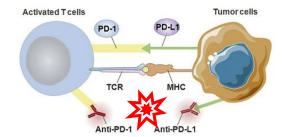
A+AVD Better

0.5 1.0

ABVD Better

Ansell et al. NEJM. 2022


ш _ _ LL. × 00 8 44 0 ш 04 8 _ _ 144 ⊢ -S 20 ш > _ z


ULB

S

Check-point inhibitors - Anti-PD1 approach

	Total (N = 31)	
Best Overall Response	No.	% (90% CI†)
Overall response rate Complete remission Partial remission	20 5 15	65 (48 to 79) 16 (7 to 31) 48 (33 to 64) 22 (41 to 20)
Stable disease Progressive disease	4	23 (11 to 38) 13 (5 to 27)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100

Time (weeks)

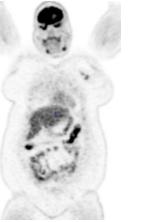
Armand et al. JCO. 2016


Anti-PD1 approach – how to assess? LYRIC – Lymphoma Response to Immunotherapy Criteria → Introduction of Intermediate Response (IR)

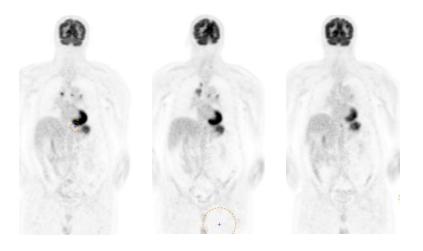
1. Increase in overall tumor burden (as assessed by sum of the product of the diameters [SPD]) of $\geq 50\%$ of up to 6 measurable lesions in the first 12 weeks of therapy, without clinical deterioration [IR(1)] (Figure 3). This pattern may be seen as a con-

2. Appearance of new lesions or growth of one or more existing lesion(s) \geq 50% at any time during treatment; occurring in the context of lack of overall progression (<50% increase) of overall tumor burden, as measured by SPD of up to 6 lesions at any time during the treatment [IR(2)] (Figure 4). This

3. Increase in FDG uptake of 1 or more lesion(s) without a concomitant increase in lesion size or number [IR(3)] (Figure 5).



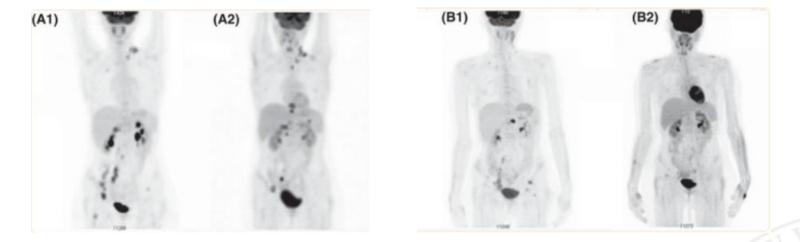
Cheson et al. Blood. 2016



Anti-PD1 approach

PD 8th line 15w Nivolumab 12w Nivolumab + Gemci

baseline


8w Pembrolizumab

16w Pembrolizumab

Anti-PD1 approach – restoring chemo-sensitivity!

ORR 93% - CR 82% How long? \rightarrow Bridge to alloSCT?

Calabretta et al. Br. J. Haematol. 2022

S

S

Hodgkin Lymphoma: Advanced stage New approaches

Anti-PD1 approach – First Line

APembroVD: 30 patients enrolled with only 1 PD after 2,1 years of follow-up! **BUT:**

- PETneg in only 57%
- EOT PETneg in only 87%

→ False positive PetCT < Fitter T cells??

CLINICAL TRIALS AND OBSERVATIONS | MAY 25, 2023

The next frontier: enter PD-1 and exit PET scans?

U Clinical Trials & Observations

Lynch et al. Blood. 2023

BRE DE BRUXELLES

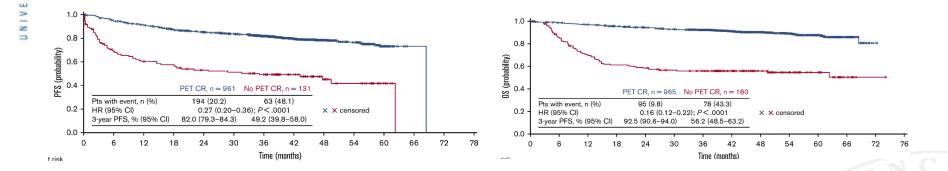
L L

UNIVERSI

Non-Hodgkin Lymphoma

BRUXELLES

0


8

RS

Diffuse Large B Cell Lymphoma

N= 1346 ND DLBCL (GOYA) O-CHOP/R-CHOP X 6-8 Evaluation of correlation between **EOT PetCT** and **outcomes**

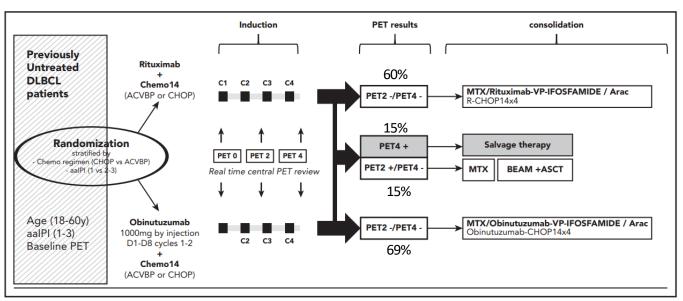
NPV 83,5% \rightarrow EOT PetCT could be a surrogate for PFS/OS

Kostakoglu et al. Blood Adv. 2021

Meta analysis from PETRA database to determine the **optimal timing** and pet **positivity criteria** for iPet to predict **outcomes - 1977 ND DLBCL** iPet done after 1-4 cycles of R-CHOP/R-DA-EPOCH Deauville score scale (cut off DS 1-3 vs 4-5 vs 5) Cut off of Δ SUV after 1-3 cycles: 66% ; after 4: 70%

	DS4-5		DS5		ΔSUV	
	24 months PFS (no of patients)	HR vs I-PET 2	24 months PFS (no of patients)	HR vs I-PET 2	24 months PFS (no of patients)	HR vs I-PET 2
I-PET2 neg	83% (711)	1	81% (1134)	1	81% (1064)	1
I-PET1 neg	72% (23)	1.7	71% (50)	1.60	68% (29)	1.89
I-PET3 neg	80% (49)	1.16	82% (59)	0.96	79% (48)	1.15
I-PET4 neg	82% (379)	1.07	80% (462)	1.07	80% (281)	1.07
I-PET2 pos	73% (504)	1	46% (81)	1	61% (153)	1
I-PET1 pos	64% (40)	1.43	49% (13)	0.93	66% (19)	1.19
I-PET3 pos	62% (15)	1.52	20% (5)	2.05	64% (9)	0.91
I-PET4 pos	62% (107)	1.52*	30% (24)	1.53	44% (29)	1.68*

 \rightarrow Room for treatment strategy petCT-guided?


Eertink et al. Blood. 2019

GAINED

ΔSUVmax 66% @PET2 ΔSUVmax 70% @PET2

4yPFS:

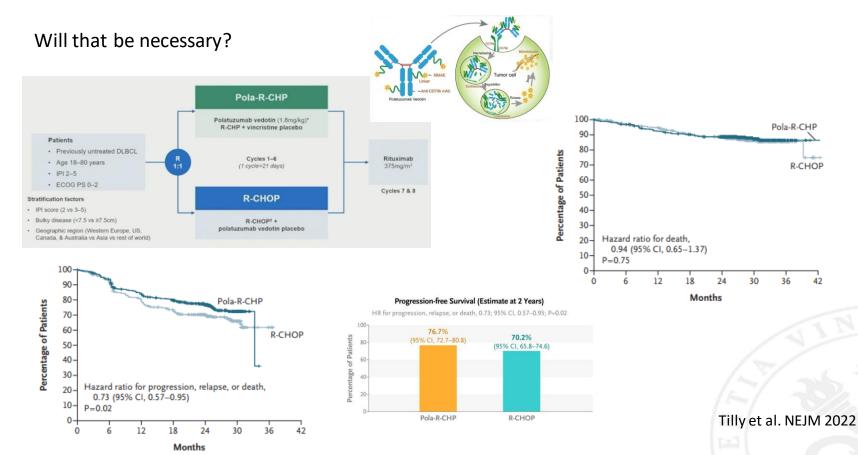
- Pet2neg Pet4neg: 83%
- Pet2posPet4neg: 83,9%
- Pet2posPet4pos: 60,9%

Le Gouill et al. Blood. 2021 Casanovas et al. Blood. 2011

What about a first line Pet-guided strategy to catch quickly bad responders (high risk of progression/relapse) and select them for next line of treatment (CAR-T treatment)?

- late responders? PET2+PET4- (gained-like strategy) // 2y PFS 42%

 \rightarrow if PET4 only: waste of time? Unecessity of chemo?



S

Diffuse Large B Cell Lymphoma

BRUXELLES

80

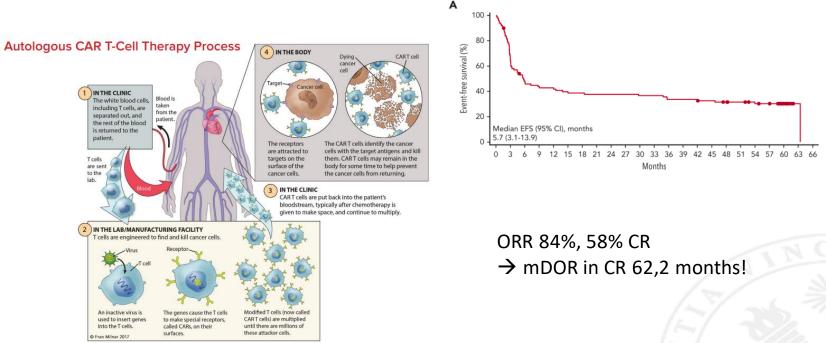
00

00

RS

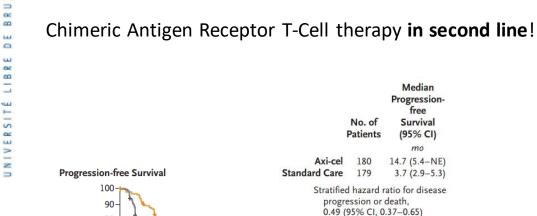
ш

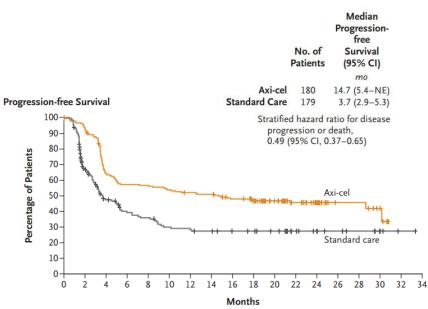

>

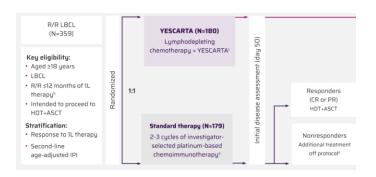

_

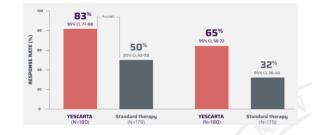
2

Diffuse Large B Cell Lymphoma




Neelapu et al. Blood. 2023

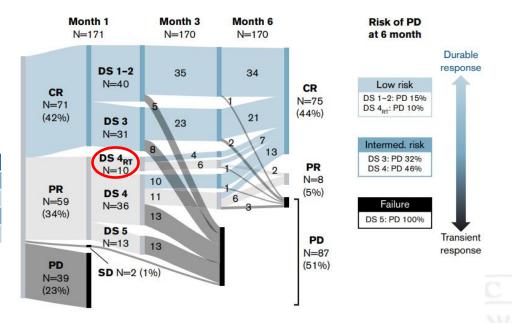

S ш _ _ LL. ×


Diffuse Large B Cell Lymphoma

Locke et al. NEJM. 2021

S

enimene Antigen neceptor r cen therapy	
Retrospective study	
171 DLDBL with CAR-T	

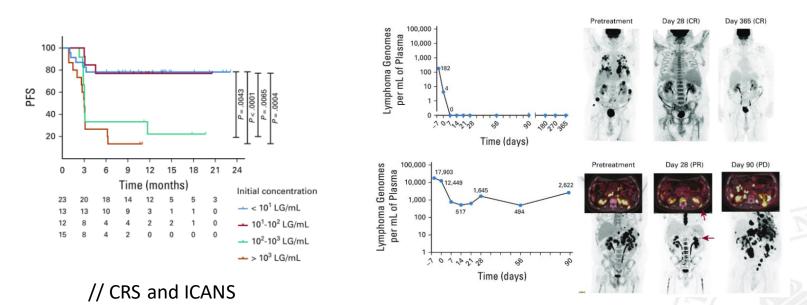

Chimeric Antigen Recentor T-Cell therapy

PetCT @ 1, 3 and 6 months post-infusion

	HR (95% CI)	5 month* PD rate
DS 1-2/4 _{RT}	1.00	14.0% (6.9–27.1)
DS 3	2.47 (0.99-6.13)	29.0% (16.3-48.4)
DS 4	3.53 (1.51-8.36)	38.9 (25.2–56.7)
DS 5	19.78 (7.77–49.7)	100%

PetCT@30d good surrogate of outcomes DS1-2/4infl vs 3 vs 4 vs 5

- → Combined strategy for DS3-4?
- → Other more precise surrogate: ctDNA?



Kuhln et al. Blood Adv.. 2021

Chimeric Antigen Receptor T-Cell therapy

 \rightarrow ctDNA might be an accurate tool for prognosis/treatment strategy - MRD

Franck et al. JCO. 2021

BRUXELLES

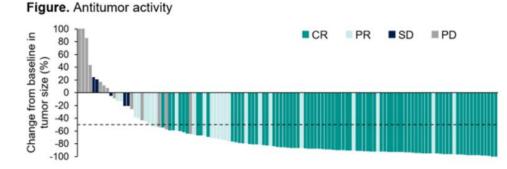
S E

00

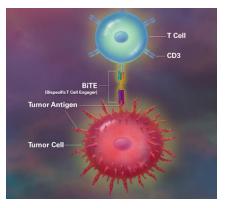
S

e u

>


z

Follicular Lymphoma


Bispecific antibodies (Epcoritamab/Mosunetusumab/Glofitamab/Odronextamab...)

R/R FL; N=128; med prior line: 3 ORR: 82% - CR 63% medDOR not reached! Est PFS@12m: 85%; @18m: 74%

Two patients had a change from baseline in tumor size of >100%. Seven patients were not evaluable for change from baseline in tumor size.

CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.

Linton et al. ASH meeting. 2023

SB

Conclusions

- PetCT remain
 - Staging/Dia
- PetCT-guided
 Hodgkin lympl
 - What abou
 - Would ct[
- PetCT is and re
 - Time for pe
 - Even more

homa

ndard of care in

?

יל

ו-Hodgkin lymphoma

vith some friends!

Thank you for your attention!

