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“Al / DL/ ML” can be used in all steps of this pipeline

Key questions:

Where to start (input) where to stop (output)? “end-to-end”?
Where do we loose most of the (relevant) information?
Where does AI/ML/DL make most sense?

What do we want / what are we lacking?




Al vs Machine learning (ML) vs Deep learning (DL)

Al research

Machine
Learning (ML)

Deep Learning
(DL)

field of study of intelligent agents, agents
that act rationally

computer algorithms that can improve
automatically through experience and by

the use of supervised, unsupervised,
reinforcement learning

machine learning methods based on

TensorFlow

BEE GEES

HOW DEEP IS YOUR y{

neural network?



ML/DL in Image Post Processing (e.g. Denoising)



Post-reconstruction learning

acquired raw data “classical” recon ML post-processed
(emission sinogram) (OSEM) recon

“low” quality “higher” quality
“blurry and noisy” “less blurry and less noisy”



Post-reconstruction learning

Image enhancement of whole-body oncology ['®F]-FDG PET scans
using deep neural networks to reduce noise

Abolfazl Mehranian' - Scott D. Wollenweber? - Matthew D. Walker? - Kevin M. Bradley* - Patrick A. Fielding® -
Kuan-Hao Su? - Robert Johnsen? - Fotis Kotasidis® - Floris P. Jansen? - Daniel R. McGowan>’®
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Mehranian et al. “Image enhancement of whole-body oncology [18F]-FDG PET scans using deep neural networks to reduce noise”, EJINMMI, 49, 2022



Post-reconstruction learning

1/4 dose 1/4 dose “DL enhanced” full dose

ARTICLE OPEN M) Check for updates \

Low-count whole-body PET with deep learning in a .ﬁf 4;’; B .y
multicenter and externally validated study 3 j e |

Akshay S. Chaudhari ®"%>7®, Erik Mittra*’, Guido A. Davidzon (', Praveen Gulaka®, Harsh Gandhi®>, Adam Brown*, Tao Zhang?,
Shyam Srinivas®, Enhao Gong?, Greg Zaharchuk('? and Hossein Jadvar©°

sens. 0.94 (0.83-0.99)
spec. 0.98 (0.95-0.99)
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Commercial products

@ SUBTLE MEDICAL

Standard Faster Al-enhanced
Scan Scan By SubtlePET™
n | |
, , nuclivision
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TIME-OF-FLIGHT PRECISION DL

4 minutes 1 minute 1 minute

per bed per bed per bed




Low Dose PET imaging challenge

BE-FDG
Administered dose:

AN 296 MBq

"'

Low Dose PET Imaging
Challenge Workshop

. 6’)/ 10 kBq/mL
'

,
!

Full dose Reduced dose

~1500 WB Quadra / Explorer data sets available



ML/DL in Image Reconstruction



End-to-end learning
(direct DL)

Physics-informed learning
(unrolled networks)

EM update

physics

EM update

physics

Post-reconstruction
learning
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Why DL/ML during reconstrucion?

MEDICAL PRTSICS Results of the 2020 fastMRI Challenge for
Report on the AAPM deep-learning sparse-view CT grand Machine Learmng MR Image Reconstruction

challenge Matthew J. Muckley™, Member, IEEE, Bruno Riemenschneider, Alireza Radmanesh",

Emil Y. Sidky | Xiaochuan Pan
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Learned End-to-End reconstruction — Deep PET

DeepPET: A deep encoder-decoder network for directly solving the | | 200 000 training cases 44 000 test cases
PET image reconstruction inverse problem 2D, simulated XCAT 2D, simulated XCAT

1 simulated scanner 1 simulated scanner
Ida Higgstrom®*, C. Ross Schmidtlein?, Gabriele Campanella®<, Thomas J. Fuchs "¢
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Haggstrom et al.: “DeepPET: A deep encoder-decoder network for directly solving the PET image recon inverse problem”, Medical Image Analysis 54 (2019)

Zhu et al.: “lImage reconstruction dy domain-transform manifold learning”, Nature 555 (2018) 14



Learned End-to-End reconstruction — Deep PET

Sinogram Sinogram DeepPET

SIM=0.821
-RMSE=0.98
PSNR=25.50
SSIM=0.813
rRMSE=1.42
PSNR=17.66

SSIM=0.715
rRMSE=0.90
PSNR=38.69

Haggstrom et al.: “DeepPET: A deep encoder-decoder network for directly solving the PET image recon inverse problem”, Medical Image Analysis 54 (2019)



Unrolled Variational Networks — Physics-Informed Learning

Model-Based Deep Learning PET Image
Reconstruction Using Forward—Backward
Splitting Expectation—Maximization
Abolfazl Mehranian™ and Andrew J. Reader
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Mehranian and Reader, “Model-Based Deep Learning PET Image Reconstruction Using Forward—Backward Splitting Expectation—Maximization”, IEEE TRPMS, 2021
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Unrolled Variational Networks — Physics-Informed Learning

uiw |

Mehranian and Reader, “"Model-Based Deep Learning PET Image Reconstruction Using Forward—Backward Splitting Expectation—Maximization”, [IEEE TRPMS, 2021
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DL/ML during reconstrucion

pROs NOT SUREIF.HYPE

potentially superior to post-re
(evidence from MR/CT recon «

“inclusion” of data fidelity

IEEE TRANSACTIONS ON RAD

Deep truction

emegenerator.net
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DL for ’corrections’” needed in the reconstruction

No correction DLSE SSS Profiles

PET scatter estimation using deep learni

Baptiste Laurent™* @, Alexandre Bousse' @, Thibaut Merlin', St |

' LaTIM, INSERM, UMR 1101, UBO, Brest, France
> Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen U:
* Author to whom any correspondence should be addressed.
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ML/DL in PET signal detection



DL to estimate photon arrival time differences

LETTER
Using convolutional neural networks to estimate 6 layer CNN 145 waveforms
. . leads to ca 20% better coincidence
tlme-of-fllg ht from PET detector waveforms timing resolution
To cite this article: Eric Berg and Simon R Cherry 2018 Phys. Med. Biol. 63 02LTO01 (@)
250
Fixed
(C) g - I Tapered
% 200
= 175
Ground-truth TOF = 400 ps ] ] ] j ]
150

R e A S S L L a\\ e
ad\(\g"’ PR RN LN MY \9‘% & \ o3
\°

26 27 28
Time (ns)

Berg and Cherry, “Using convolutional neural networks to estimate time-of-flight from PET detector waveforms”, PMB 63 (2018) 1



DL to estimate photon arrival time differences

PAPER

Artificial neural networks for positioning of gamma interactions
in monolithic PET detectors

Milan Decuyper' (2}, Mariele Stockhoff' (), Stefaan Vandenberghe' and Roel Van Holen'
Published 23 March 2021 - © 2021 Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology, Volume 66, Number 7

Citation Milan Decuyper et al 2021 Phys. Med. Biol. 66 075001

DOI 10.1088/1361-6560/abebfc
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Take Home Message and Final Thoughts



Summary + Take Home Messages

« ML/DL can be used in many stages of the image generation
pipeline (raw signal processing, during and
post reconstruction, corrections ...)

* benefit of DL during recon methods (from CT and MR)
not shown yet in molecular imaging
- more careful research needed

 meaningful and critical evaluation of new DL
methods not trivial
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Final thoughts / Concerns / Outlook

oot Eespprts Hype Cycle
* growing gap between medical and technical experts Soptatens
* training DL models is ”easy” + “peak of DL hype cycle” . m.n
- risk of losing competence in ”"classical” image recon + analysis ~

- tsunami by poor DL solutions

g
Technology Trigger Disillusionment

F12}.net’
Comatder T done

What we need for a critical evaluation of DL
* better data collection, curation and sharing — on all levels
e critical evaluations on clinical tasks — not on mathematical metrics

* better collaboration between clinicians and researchers with tech / physics focus
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