

POTENTIAL AND PITFALLS OF AI FOR DENOISING AND

SYSTEM DESIGN IN NUCLEAR MEDICINE (PET-CT)

Prof. Stefaan Vandenberghe

Research professor, Innovative Molecular Imaging and Therapy **MEDISIP** -Infinity lab, UGent Belgium Stefaan.Vandenberghe@ugent.be **2 0032 93325854**

Innovative Molecular Imaging and Therapy

University of Pisa

SPEAKER DISCLOSURE

- Editor-in-Chief EJNMMI Physics (Springer Nature)
- One of the founders of Nuclivision.com (Ghent, Belgium) lacksquare
- Patents with Ugent used by Molecubes •

IN FACULTY OF ENGINEERING

THE PRESENT

STATE OF THE ART IN (TB)-PET-CT

POTENTIAL

HOW TO USE AI TO IMPROVE PET-CT ?

THE FUTURE

HOW TO CHANGE PET-CT WITH AI ?

PEI-CI

New evolutions on tracers: Theranostics, **PSMA** and Fapi

New evolutions in detectors and AI

RESEARCH REPORTS

Molecular Imaging Market will expand at an impressive CAGR of around 11.3% from 2021 to 2031

LARGE CHANGES IN PET PERFORMANCE

PET detector and system improvements

TOTAL BODY PET-CT

Low dose imaging Faster

Total Body at once

Research tool Why would I need it ? Too expensive Hospital will never pay this

Very high acquisition cost 8-12 MEuro **Expensive service contract**

Interesting/innovative I want the best Other academics have it Grant will pay for it

Private

Academic

PET-CT VERSUS TOTAL BODY PET-CT

PET VS TOTAL BODY PET (ACQ COST)

Long Axial FOV= LAFOV

Short Axial FOV= SAFOV

Customer perspective Best PET scanner possible at reasonable price

Society perspective As many PET scanners as possible

Current TB PET

+Very sensitive

Expensive CT dose Amount of data

- Fast scan times
- One bed position
- Dose of PET can be reduced

- Slow patient positioning

EXPECTED INCREASE IN PET(-CT) PATIENTS

Why?

- New tracers for imaging with large number of patients: PSMA, Fapi.... \bullet
- Not only detection but more and more (expensive) therapy prediction and follow-up ۲
 - Early detection \rightarrow improved therapy outcome ullet
 - First PET scan (60%, 20 % normals) ullet
 - Follow-up (40%) •
- Future maybe selected screening: genetic, blood test, patient history \rightarrow Fast evolutions towards early diagnosis of cancer
- Even with selected screening there will be a high number of patients and repeat scans
- **How** to deal with this: \bullet
 - Lower dose imaging (screening, other populations) •
 - Faster imaging + Throughput ۲
 - Lower cost imaging (systems + procedure) ullet
 - Less personnel per scan

FACULTY OF ENGINEERING

THE PRESENT

STATE OF THE ART IN (TB)-PET-CT

POTENTIAL

HOW TO USE AI TO IMPROVE PET-CT ?

THE FUTURE

HOW TO CHANGE PET-CT WITH AI ?

(ID)-PEI-CI

Arabi H, et al. (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med.

Decuyper M, et al. (2021) Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys.

Slide layout courtesy of FM Muller

DEEP LEARNING BASED SYSTEM DESIGN

MEDIUM COST TOTAL BODY PET

 \sim 4 x less counts than full TB PET But still 3-4x more than PET

50 % less detectors

Lower cost TB PET

4-6 Meuro range

With 2x - 3x higher througput financially interesting for most centers

TO THE

RESCUE

GHENT

UNIVERSITY

ARTIFICIALLY 'BOOST' LOWER COST (TB)-PET

LOW NOISE 'RECONSTRUCTION' **USING DEEP LEARNING** Train low dose-high dose pairs

Standard Scan

ЯĮ 4 minutes 1 minute 1 minute per bed per bed per bed

Convolutional Neural networks

PET detector and system improvements 2020 2000 2005 2010

Gradual changes Longer Axial FOV Improvements in iterative recon and scatter correction

Increase in computing power, memory and storage

Total Body PET

Deep learning Detectors Denoising **Data analysis**

Deep learning denoising of sparse configurations

Cost-effective Total-Body PET with Axial and Transverse Gaps

Min Gao, Florence M. Muller, Margaret E. Daube-Witherspoon, Fellow, IEEE, Joel S. Karp, Fellow, IEEE, and Suleman Surti, Senior Member, IEEE

Presented at IEEE MIC 2023

Full PennPET configuration

Sparse configuration

Around 2/3 of LORs are removed

→ 43% detector savings

Al to enhance system

performance

GE Omni Legend 30 mm thick BGO-non TOF

32 cm or 64 cm or 96 cm or 128 cm or Axial length Future Upgradeable

No time of flight (ToF)? No problem ;)

Non-TOF \rightarrow lower cost detector/electronics

BGO of 30 mm \rightarrow superior non-TOF sensitivity

DL network trained on non-TOF images and TOF images

Al to enhance lower cost

detector performance

TOF FROM BGO

Timestamping

network

Positioning network

Cherenkov light = only 0.2% of the scintillation light But instant light (20 photons) SiPMs around 50-60 % PDE Low noise SiPMs

Deep learning based TOF and position 15 % energy resolution 1.3 mm spatial resolution 327 ps TOF 6x6 mm SiPMs → less channels 12 mm BGO: 3 x cheaper ASIC Barcelona

Arabi H, et al. (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med.

Decuyper M, et al. (2021) Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys.

DL BASED IMAGE RECONSTRUCTION

DL FOR CT IMAGE RECONSTRUCTION

FDA Clears AiCE Image Reconstruction on Canon Aquilion Precision CT

- Singh R, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of sub millisievert chest and abdominal CT. American Journal of Roentgenology. 2020 Mar;214(3):566-73.
- Arndt C, et al. Deep Learning CT Image Reconstruction in Clinical Practice. Rofo. 2021 Mar;193(3):252-261.

RESULTS FROM AICE

(A) Low dose CT reconstructed with iterative algorithm

(B) Low dose CT reconstructed with **deep learning algorithm**

- Improved contrast spatial resolution
- Reduced noise

DL FOR PET IMAGE RECONSTRUCTION

Multitude of CNN architectures are developed and investigated but the neural network always aims to directly reconstruct an image from acquired data.

Encoder-decoder (Reader A. et al.)

DeepPET (Häggström I. et al.)

AUTOMAP (Zhu B. et al.)

RESULTS: DEEPPET

Simulated data

Real data

GHENT

UNIVERSITY

\sim **10% lower noise** (RMSE) than OSEM \sim 10x faster than OSEM

DL FOR DATA CORRECTIONS

Deep learning (DL) methods have shown promising potential to result in more accurate and faster performance of (CT-less) attenuation and scatter correction (ASC) in PET imaging [1-3]. [1] Lee JS. (2021) IEEE TRPMS. [2] Chen, X., Liu, C. (2023) J Nucl Cardiol. [3] McMillan AB, Bradshaw TJ. (2021) PET Clin

corrected (ASC) PET image

Extra recon steps with (SSS) scatter estimate → Time-consuming

Very fast: directly predicts the final PET image (only requires NAC recon)

One network to jointly predict AC and $SC \rightarrow Challenge$ to handle a variety of tracer studies: needs large training

GHENT compared to the other two DL models (< 1 SUV difference: 15%)

≻ Li →

NC-2-AC-2-ASC

Liver: Negative bias (DL-based < CT-based)</p>

 \rightarrow Undercorrected for attenuation

Courtesy of FM.Muller

Arabi H, et al. (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med.

Decuyper M, et al. (2021) Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys.

WHY DENOISING?

Lower radiation dose

- •
- patients •
- Faster imaging
 - Increased patient throughput
 - Patient moves more during longer scan (-> • artefacts)

- especially for paediatric and non-cancer
- Non-standard tracers for PET can be very expensive

1/10 dose

Coronal slice is shown

AND ARCHITECTURE

THE PRESENT

STATE OF THE ART IN (TB)-PET-CT

POTENTIAL

HOW TO USE AI TO IMPROVE PET-CT?

THE FUTURE

HOW TO CHANGE PET-CT WITH AI ?

WHAT IS THE CURRENT CHALLENGE IN IMAGING

- Very good systems available but quite expensive lacksquare
- Real world challenges (indicated by NM physicians and radiologists) lacksquare
 - Accurate quantification (therapy prediction/follow up) ~ spatial resolution
 - Cost reduction of the systems without loss of quality
 - Personnel availability \bullet
 - Enhance the throughput/ number of patients
 - Aid the physician in handling all the data

INTRODUCTION OF AI

Al is an essential component for new cars

Noisy No updates Only hardware problems

More quiet Can (must) be updated Almost self driving Software and hardware problems

Walk-Through Total-Body PET

50 cm gap

- Detectors much closer to patient
 - **Smaller footprint**
- Fewer detectors with same AFOV
 - 1.9x less detector surface
 - Lower system cost

PATIENT CENTERED DESIGN

Fig. 1 (a) System design concept (b) Anthropomorphic measures (c) Measures from CT of PET-CT patients

(a)

(c)

Fig. 2: (a) Artist view of the Walk-Through TB-PET (b) Flat panel dimensions and design (c) One side of the mock-up with the handlebars installed to reduce the body motion. (d) Side view of the WT-TB-PET mock-up used for patient throughput measurements. Prints of feet are used to let the patient position themself between the flat panels. (e) The four blue modules on each panel side can manually be adjusted to the right height.

COMPARISON QUADRA VS WT-PET

Fig. 3: Comparison between the Siemens Vision Quadra design in blue and the Walk-Through TB-PET design in green.

Excellent spatial resolution:

- High intrinsic resolution of monoliths
- 6 layer DOI

GHENT

UNIVERSITY

Large opening angle in transverse and axial direction

2-3 x better spatial resolution

Comparable sensitivity

FULL SYSTEM SIMULATION/RECON

GATE MC-SIM

Xcat 3 MBq/kg - 56 kg 1m72 cm height Lesions of 10, 7 and 5 mm 8:1 contrast 30 sec stationary acquisition !!

RECON

TOF-listmode ML-EM 2 mm voxels 327 ps 10 iterations

Two opposed panels with **280 Monolithic BGO Blocks**

106 cm 50 cm 50 cm gap, 70 cm wide,106 cm high

LM-MLEM Julia-GPU Meysam Dadgar Jens Maebe

Transverse/coronal/Sagittal slice show excellent contrast/image quality

Some limited angle artefacts close to detectors

LIMITED ANGLE EFFECTS

artifact removal in projection domain

Approaches Sinogram completion with **Fourier methods**

Deep learning based image restoration

Learn from image pairs of complete/incomplete data

Deep learning image restoration inside recon

Input: fixed WT-PET configuration

IEEE MIC 2023

Jens Maebe

Training pairs

Target: rotating WT-PET configuration

DL artefact corrected image

BENEFITS OF WALK-THROUGH PET

Patient throughput Avoids patient positioning+ scout-view and CT Aim: PET in breath-hold of 30 sec Patient throughput of 3-5 min

Less personnel Most patients can position themselves

Disadvantages

No anatomical CT quality How to scan bedridden patients? WIP 😉

QUANTITATIVE PET WITHOUT CT

Input-output training Pairs of NAC-PET and CT of patients

DL-generated transmission image

Quantitative reconstruction

Penn-PET LAFOV Explorer

Joint Ugent-UPENN PhD Florence Marie Muller

To Be checked Robustness ? Other objects ?

Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction

Rui Guo, Song Xue, Jiaxi Hu, Hasan Sari, Clemens Mingels, Konstantinos Zeimpekis, George Prenosil, Yue Wang, Yu Zhang, Marco Viscione, Raphael Sznitman, Axel Rominger, Biao Li 🖂 & Kuangyu Shi

Nature Communications 13, Article number: 5882 (2022) Cite this article

TOTAL COST OF OWNERSHIP IS KEY

PET scanner is more than acquisition cost & service contract

Throughput !

GHFNT

- Daily tracer/radiopharmacy costs
- Personnel cost + hospital space
- \rightarrow Average cost per (quality) scan is what 'counts' (Physicists think too often it are the number of counts or TOF that 'counts')

Tesla Model 3 SR+

Ouoted Price 520 £

39 £

TCO Price

HOW TO ESTIMATE EXPECTED THROUGHPUT?

Prof N.Withofs NM CHU

One day of recording on Siemens Vision at CHU-Liege Average PET scan/transfer/scout/CT times for 3MBq/kg patients

Steps in this process

- 1. Measure throughput in a real setting on an existing Siemens Vision
- 2. Simulate systems to determine sensitivity difference
- Use Simulated sensitivity + TOF to predict scan times on other systems 3.
- 4. Estimate setup/transfer time of WT-PET with a mockup
- Calculate throughput based on PET scan times and setup/transfer time 5.
- Calculate the component cost of systems (based on quotes) 6.
- 7. Calculate how much tracer is required to inject all patients
 - Account for time between patients •
 - Account for decay

System config	SAFOV LSO 210 ps	LAFOV (limited) LSO 210 ps	LAFOV LSO 210 ps	WT-PET BGO 400 ps
Sensitivity	15 kcps/MBg	83 kcps/MBg	176 kcps/MBg	152 kcps/MBg
PET acquisition time	600 sec	108 sec	51 sec	112 sec /
Time for Transfer/setup/CT	420 sec	420 sec	420 sec	210 sec 🆌
# of possible scans in 8hr	28	54	61	89
Relative cost of PET system	1	4	4	1.4
Reduction in tracer cost vs SAFOV	0%	39 %	46 %	66 %

WT-PET

- 2.85 x lower component cost than Quadra Lower sensitivity + TOF than Quadra But has potential to scan

- At 66% lower dose cost/patient than Vision

Gate Simulations Mevsam Dadgar

Mockup measurments Florence Muller,

- 1.3 x more patients than Quadra
 - 3.1 x more patients than Vision

ONGOING WORK: STANDING MOTION CHALLENGE

Support from back + handle bars Projection from back \rightarrow instruct minimal motion Scan fast (30 sec) to minimize motion Camera to capture patient motion Track motion during 30 sec IR markers on head/shoulders/chest/abdomen

Normal breathing vs breath-hold

PhD Rabia Aziz: AI for motion correction

FIRST DESIGN CONCEPTS

Project timing (2022-2025)

Project Partners

ST Engineering

THE FAST LANE

Al will be employed into the entire imaging pipeline.

denoising

Motion detection

GHEN1

UNIVERSITY

Gains in chain may enhance each other \rightarrow Faster molecular imaging systems

reconstruction

and corrections

Efficient reporting

Upgrading every car to a Ferrari does not solve traffic jams GHENT UNIVERSITY

Not only scanner but whole chain needs optimization

Long term vision:

Make nuclear medicine more efficient, less personnel, more accurate and lower cost

Shifting tasks of nuclear medicine physicists

Manual quality control

Image processing

Voxel based dosimetry

Data exchange with other departments) (Radiotherapy, radiology, oncology..)

AI training and testing

Shifting tasks of nuclear medicine physicians

Patient care

Reading scans

Training staff members

Patient care

Testing/learning to use Al

Training AI for diagnosis and prediction

SUMMARY/DISCUSSION

- AI has the potential to speed up imaging and impact system design ullet
- Quite safe and predictable for simple tasks (positioning, denoising) •
- AI seems to be used gradually in reconstruction and denoising (CT, MRI, PET, SPECT) •
- Future higher throughput/low-cost design based on Walk-Through PET with AI ullet
- AI can/should be used for diagnosis/prediction but carefully especially for complex tasks ullet
- Clear standardized training data with gold standard for training are key for further progress •

Al is like a complex toolbox/equalizer with many knobs and settings to train input to output, it does it faster and probably better but maybe also sometimes worse and unpredictable.

AI-powered object detection just identified the longest cow on earth

Thanks!

Prof Dr Stefaan Vandenberghe Expert in molecular imaging, PET system development. Ir. Jens Maebe, Master of Science in Engineering Physics: Expert in the use of artificial intelligence in PET and CT

Ir. Florence Marie Muller, Master of Science in Biomedical engineering:

Expert in ultra low dose PET and CT Msc. Maya Abi Akl,

Master in Physics:

Expert in Total body

PET optimisation

Prof Dr. Nadia Withofs

Nuclear medicine clinician Patient centered design Motion minimization, detection anc correction

ST Engineering

Msc Rabia Aziz

Prof Joel Karp Senior advisor Experience in bringing clinical PET prototypes to market (UGM/ADAC/Philips)

Vanhove Lab leader

Top level international Clinical Advisory Board

- Rudi Dierckx (EANM president)
- Arturo Chiti (Editor-in-Chief EJNMMI)
- Ken Herrmann (Essen Hospital)
- Rominger Axel (Insel Hospital Bern)
- Alexander Hammers (KCL London)
- David Mankoff (UPENN)
- Christophe Deroose (KU Leuven)
- Francois Benard (Vancouver)

Website: WT-PET.org

Possible future for efficient NM

- Patient preparation/injection
- Walk to waiting rooms
- Video instructions for patient scan
- Patients walk in the scanner.
- Fast positioning and acquisition
- High throughput
- Fast deep learning based
 - Image reconstruction
 - Motion correction

FUTURE WORK: ADD DIAGNOSTIC CT

- PhD Boris Vervenne (1st october 2023)
- Design CT scanner for
 - Scanning torso while patients are standing upright Sufficiently fast (< 1min for full torso)
 - • \bullet
 - Reliable detector technology

Making the Invisible Visible

0.2 km/hr = about 10 s for 50 cm

MOTION: LEAN BACK AGAINST SURFACE

Kinect camera

- IR markers are positioned: on shoulders, on glasses (head), chest level, abdomen
- ► Record in x (left-right), y (front-back), z (vertical)

Motion in standing position \rightarrow Limited due to short 30 s scan \rightarrow Mostly head forward and back

Mockup measurments Florence Muller, Jens Maebe, Nadia WIthhofs,