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Important role in cancer Cyclotron
diagnosis and treatment Expensive

FDG Radioactivity Molecular |mi_l!liﬂ!l Market Wil
Medium throughput expand at an impressive CAGR of
around 11.3% from 2021 to 2031

RESEARCH REPORTS

Global PET Scanners Market Share (%) Value,

. l by Product Type, 2019 '
New evolutions on tracers: o B
] L] ; & 1 : | . FULL RING PET SCANNER
Theranostics, PSMA and Fapi = P

PARTIAL RING PET SCANNER

— New evolutions in detectors | Market Value (US$ Mn), By Oncology, 2016 - 2027
i and Al ‘ usssosm Si
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LARGE CHANGES IN PET PERFORMANCE

PET detector and system improvements

1995 2000 2005 2010 2020
BGO/Nal Septa PET Coincidence Total Body PET
l l l l Deep learning
Detectors Denoising
Data analysis
L(Y)SO Fully 3D PET-CT Time-of-Flight

GHENT
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Gradual changes
Longer Axial FOV
Improvements in iterative recon and scatter correction
Increase in computing power, memory and storage




TOTAL BODY PET-CT

Low dose imaging Very high acquisition cost
Faster 8-12 MEuro
Total Body at once Expensive service contract

Research tool
Why would | need it ?
Too expensive
Hospital will never pay this

Interesting/innovative
| want the best
Other academics have it
Grant will pay for it

GHENT
UNIVERSITY

Private Academic



PET-CT VERSUS TOTAL BODY PET-CT
/ 10-20 x \

Faster torso imaging

And/or lower dose
+

Simultaneous imaging of

organs
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PET VS TOTAL BODY PET (ACQ COST

1 TB PET-CT or 3 standard PET-CT

Long Axial FOV= LAFOV Short Axial FOV= SAFOV

Best PET scanner possible As many PET scanners as possible
at reasonable price 8



Peak of Inflated
Expectation
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Hype Cycle and
Technology Adoption Lifecycle

Current TB PET

S
Very sensitive

Fast scan times
One bed position

> Plotted together
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"The Chasm" \
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Adoption Rate

Dose of PET can be reduced

.

Expensive
Slow patient positioning
CT dose

\ Amount of data
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EXPECTED INCREASE IN PET(-CT) PATIENTS

Why ?

GHENT
UNIVERSITY

New tracers for imaging with large number of patients: PSMA, Fapi....

Not only detection but more and more (expensive) therapy prediction and follow-up
« Early detection = improved therapy outcome
* First PET scan (60%, 20 % normals)
* Follow-up (40%)

Future maybe selected screening: genetic, blood test, patient history

- Fast evolutions towards early diagnosis of cancer

Even with selected screening there will be a high number of patients and repeat scans

How to deal with this:
« Lower dose imaging (screening, other populations)
« Faster imaging + Throughput
« Lower cost imaging (systems + procedure)
* Less personnel per scan

10
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OVERVIEW

Decuyper M, et al. (2021) Artificial intelligence with deep
learning in nuclear medicine and radiology. EJNMMI Phys.

Arabi H, et al. (2021) The promise of artificial intelligence and
deep learning in PET and SPECT imaging. Phys Med.

Al can be employed into the entire imaging pipeline.

Acquisition

Reconstruction

Diagnosis

Analysis

>
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Lower cost systems

DL-TOF

Improve detector performance

Slide layout courtesy of FM Muller




DEEP LEARNING BASED SYSTEM
DESIGN

UNIVERSITY



MEDIUM COST TOTAL BODY PET

s bennensbeanane binaans bananndnnas bsnsid nnnanibanaanal aanany

T T T T e e e T Thin crystal TB PET
Total body PET RO L L R A L S S S G
10 ) M O 00 00 00 0m T
Lower cost detector options
— = Sparse crystal TB PET
Light detection S‘;:v:r:::M ' m m m m W m

EINMMI The potential of a medium-cqs.t long axial FOV PET system

A for nuclear medicine departments

&Mlecar Stefaan Vandenberghe Nicolas A. Karakatsanis Maya Abi

Akla, Jens Maebe Suleman Surti Rudi A. Dierckx Othmane
Bouhalie Joel S. Karp, accepted for EINMMI

Electronics

Improved TOF (?)
Limited DOI
50 % less scintillator

~ 4 x less counts than full TB PET
But still 3-4x more than PET

50 % less detectors

l

Lower cost TB PET
4-6 Meuro range

With 2x - 3x higher
througput financially
interesting for most centers 14




ARTIFICIALLY ‘BOOST LOWER COST (TB)-PET

LOWNOISE Convolutional Neural networks
‘RECONSTRUCTION’
TO THE USING DEEP LEARNING . oot — 20 2":2':’:‘,’,'.‘!;2 Q g
RESCUE Train low dose-high dose pairs e =R
Low dose High dose /w 3 /ﬁ 32 32 32 64 — 64+32 32 32 !p
il 64+128 64 64 _
() " (’ 128 128 128 (J
.\\j? AW A
l Ml::lt;jlt'ce Encoder Layers Decoder Layers P;sgicflt;i? Proelii;tid
standaid  Faster  -AlepBwicsd PET detector and system improvements
Scan Scan By SubtlePET™
1995 2000 2005 2010 2020
@ || a | &
3 ' ’ ; 3 ’
R @ @ BGO/Nal Septa PET Coincidence Total Body PET
_ l l l l Deep learning
Detectors
L(Y)SO Fully 3D PET-CT Time-of-Flight Denoising @
Data analysis
—_ 4 minutes 1 minute Gradual changes
[ per bed per bed

Longer Axial FOV
GHENT Improvements in iterative recon and scatter correction
UNIVERSITY Increase in computing power, memory and storage




Deep learning denoising of sparse configurations

Full PennPET
configuration

Sparse DL-denoised Full

Sparse
configuration

) Around 2/3 of LORs are removed

- - 42 tiles — >

=> 43% detector savings

10 tile-rings axial gap

Cost-effective Total-Body PET
with Axial and Transverse Gaps Presented at IEEE MIC 2023

Min Gao, Florence M. Muller, Margaret E. Daube-Witherspoon, Fellow, IEEE,
' () '
..

Penn

UNIVERSITY 0f PENNSYLVANIA

Joel S. Karp, Fellow, IEEE, and Suleman Surti, Senior Member, IEEE



Al to enhance system
performance

30 mm thick BGO-non TOF

32 cm or
64 cm or
96 cm or
128 cm or
Axial length
Future

Upgradeable

GE Omni Legend

Ultra-high sensitivity All-digital Enhanced workflow Single platform

Non-TOF - lower cost detector/electronics
BGO of 30 mm - superior non-TOF sensitivity

DL network trained on non-TOF images and TOF images

Diagnostic confidence Innovative detector Improved patient Multi-dimensional
design Deep learning experience clinical flexibility
image processing*

T T ——

No time of flight (ToF)? No problem ;)

In our recent paper, we developed a deep learning based ToF (DL-ToF)
algorithm that improves the lesion detectability and diagnostic confidence of
non-ToF PET images. Check it out here https://Inkd.infeqWVjNa3

#gehealthcare #oxforduniversity #NCIMI #deeplearning

NoQ-ToF DIL-ToF IoF
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TO THE
RESCUE

"The proof of the puddingis in
the eating”
17
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Al to enhance lower cost

detector performance
TOF FROM BGO

RF Voius i - — -
' ' 4 4 > 8 Module, (M)
SIPM Vi, N : - SIPM Ve, ‘ s | Layer
5, 2R Coincidence Event I X Weights X
““Na source Positioning
network Y Y
s Z 5 z
Digital Oscilloscope Timestamping o t t
network
Cherenkov light = only 0.2% of the scintillation light
B!Jt instant Ilght (20 pDOtonS) Deep learning based TOF and position
SiPMs groupd 50-60 % PDE 15 % energy resolution
Low noise SiPMs 1.3 mm spatial resolution
327 ps TOF
~ HHH 6x6 mm SiPMs = less channels
TN 12 mm BGO: 3 x cheaper
GHENT ASIC Barcelona
UNIVERSITY 18




Decuyper M, et al. (2021) Artificial intelligence with deep
learning in nuclear medicine and radiology. EJNMMI Phys.

OVERVIEW

Arabi H, et al. (2021) The promise of artificial intelligence and
deep learning in PET and SPECT imaging. Phys Med.

Al can be employed into the entire imaging pipeline.

Diagnosis

Analysis

Acquisition Reconstruction

= DL-based Image Reconstruction

"= DL for Data Corrections

—
L1}
GHENT Penn = DL for Image Quality Enhancement

UNIVERSITY




DL BASED IMAGE RECONSTRUCTION
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DL FOR CT IMAGE RECONSTRUCTION

FDA Clears AiCE Image Reconstruction
on Canon Aquilion Precision CT

AiCE - Validated Deep Convolutional Neural Network

» =

o
- - .
ARy AW 8y Y
P

Data Acquisition AiCE Image

« Singh R, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction
of sub millisievert chest and abdominal CT. American Journal of Roentgenology. 2020 Mar;214(3):566-73.
« Armndt C, et al. Deep Learning CT Image Reconstruction in Clinical Practice. Rofo. 2021 Mar;193(3).252-261.

—_
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RESULTS FROM AICE

(A) Low dose CT reconstructed with iterative algorithm

(B) Low dose CT reconstructed with deep learning algorithm
= |Improved contrast spatial resolution
= Reduced noise

GHENT
UNIVERSITY



DL FOR PET IMAGE RECONSTRUCTION

= Multitude of CNN architectures are developed and investigated but the neural
network always aims to directly reconstruct an image from acquired data.

ENCODER / DECODER/
TRANSFORM / GENERATOR /
ANALYSIS SYNTHESIS
[ | A
F IIy 3D PET Reconstructed
3D PET image
| gl -
LATENT SPACE AW
CODED %&' .@5
REPRESENTATION AR S
B m eck,
sparse layer)
Spatial downsampling Spatial upsampling
Increasing feature maps Decreasing feature maps

Radlal Bms
x Angles

128
I I I 256

Conv 7x7

FEATURE MAPS / KERNELS

6
28 )
256 3
||||||||||||||||||||||||||||||||||||||||I|||||"| ,
x1.7

Conv 5x5

IConv 3x3 IBN + RelLU

32 ., 1

IUpsampIing x1.7 'x1

Encoder-decoder (ReaderA. et al.)

=

LI —

GHENT & Penn
UNIVERSITY UNIVERSITY of PENSTLYANLY

Radial bins
x Angles

Flatten / reshape

KERNELS

FEATURE MAPS /

DeepPET (Haggstrom 1. et al.)

AUTOMAP znhuB. et al)



RESULTS: DEEPPET

Simulated data

DeepPET

3 @@

SSIM=0.915 SSIM=0.964 SSIM=0.970
rRMSE=1.01 rRMSE=0.78 rRMSE=0.68
PSNR=29.45 PSNR=30.58 PSNR=31.22

Real data

OSEM DeepPET

GHENT
UNIVERSITY

100 4

1071 -

Time (s)

1072 -

1.05 A
1.00 A
0.95 A1
0.90 A
) 0.85 -
n
0.80 -
0.75 1
0.70 -

0.65 -

FBP

OSEM DeepPET

PSNR (dB)

FBP

OSEM  DeepPET

FBP

OSEM DeepPET

~10% lower noise (RMSE) than OSEM
~10x faster than OSEM




DL FOR DATA CORRECTIONS
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Deep learning (DL) methods have shown promising potential to result in more accurate and faster performance of

(CT-less) attenuation and scatter correction (ASC) in PET imaging [1-3].
[1] Lee JS. (2021) IEEE TRPMS. [2] Chen, X., Liu, C. (2023) J Nucl Cardiol. [3] McMillan AB, Bradshaw TJ. (2021) PET Clin

used to derive the ACF O Anatomical image: not of diagnostic
needed for PET image quality, but sufficiently realistic to
reconstruction N . :
minimize reconstruction bias
v s DL-prediction of
° a CT-like image Q Extra recon steps with (SSS) scatter
| estimate - Time-consuming
Non-corrected Transmission
PET image image (mu-map)
’ 0 Very fast: directly predicts the final
PET image (only requires NAC recon)
> Q One network to jointly predict AC and
e® DL-prediction of a fully ' SC - Challenge to handle a variety
Jont Ugent-UPENN Pr corrected PET image s of tracer studies: needs large training
—_—
I}
GHENT @P@l 18 Attenuation- and scatter-
UNIVERSITY S corrected (ASC) PET image Courtesy of FM Muller
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NC-2-Tr NC-2-ASC NC-2-AC-2-ASC

Non-Corr. CT-based
(NC) PET AC PET Only NC Only NC Only NC
@ [ | @ & & U
1l °
5
4
3
2
g
— 0
o & 2 [SUV]
1.0
Difference image l
0.5  within
IDETDL—based - F)ETCT—based >—1— > —— +/- 1
0.0 SUV!
-0.5
| '
-1.0

T NC-2-Tr model: much lower bias (< 0.2 SUV difference: 3%)| | > Liver: Negative bias (DL-based < CT-based)

GENT compared to the other two DL models (< 1 SUV difference: 15%) - Undercorrected for attenuation

UNIVERSITY
Courtesy of FM.Muller



OVERVIEW

Decuyper M, et al. (2021) Artificial intelligence with deep
learning in nuclear medicine and radiology. EJNMMI Phys.

Arabi H, et al. (2021) The promise of artificial intelligence and
deep learning in PET and SPECT imaging. Phys Med.

Al can be employed into the entire imaging pipeline.

GHENT
UNIVERSITY

Acquisition

R 40

‘ ' P@I]D
UNIVERSITY 0f PENNSYLVANIA

Reconstruction

Diagnosis

Analysis

= Denoising of static data

= Denoising of dynamic data




WHY DENOISING?

Noise inversely related to dose and acquisition time

5% of dose (30s)

Std Dose (10mins) 25% of dose (2 min)

@ @ e = |ower radiation dose

« especially for paediatric and non-cancer

patients
 Non-standard tracers for PET can be very
expensive

= Faster imaging
* Increased patient throughput
« Patient moves more during longer scan (->

artefacts)

29
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3 mins

1 min

Lesion Detectability (Numerical Observer)

Lung ALROC

Gaussian-filtered . o R
(FWHM=4mm) | ° & = 5 2 Bl
L ’ L o ||FRCHE
Gaussian-filtered
(FWHM =7 mm) | B . o
» . . - . » . "‘| ..
DL-denoised ' E 2 i
e " "N~ N = * ri

.‘Q

Penn

UNIVERSITY 0f PENNSYLVANIA

0,8

0,6

0,4

0,2

—@—Low-count input

O 4-mm Gaussian
O—5-mm Gaussian
—@—6-mm Gaussian
—@—7-mm Gaussian

O—DL-denoised

Time (s)

20

30

40 50 60



Standard-dose

' 1/2d
Dynamic '8F-FDG Dataset (9.3 mCi) ose 1/10 dose

Input

DL-denoised

co— R4
GHENT ' Pe[] N
UNIVERSITY 0f PENNSYLVANIA

UNIVERSITY

Coronal slice is shown
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WHAT IS THE CURRENT CHALLENGE IN IMAGING

* Very good systems available but quite expensive

« Real world challenges (indicated by NM physicians and radiologists)

Accurate quantification (therapy prediction/follow up) ~ spatial resolution
Cost reduction of the systems without loss of quality

Personnel availability

Enhance the throughput/ number of patients

Aid the physician in handling all the data

PATIENT PATIENT IMAGE
INSTRUCTIONS PREPARATION RECONSTRUCTION

AUTOMATED
DISPENSING

£

| -
g

— .
GHENT It's the Process Stupid. == ——— ﬁg/
UNIVERSITY : il

CLINICAL IMAGING DOSE-TRACKING AND INTERPRETATION
GUIDELINES EDG FRODUCTION IMAGE ANALYTICS AND REPORTING |




INTRODUCTION OF Al

Noisy

No updates

Only hardware problems
T
GHENT
UNIVERSITY

Al is an essential component for new cars

Forward
Looking
Side Triple
Rear View Cameras Forward
Camera Cameras

Ultrasonic
Sensors

Rearward
Looking
Side
Cameras

More quiet

Can (must) be updated

Almost self driving

Software and hardware problems



Walk-Through Total-Body PET

80 cm 106 cm t
high
106 cm < > |
y.4 ,’, —— ,/", » N
by 70 cm
wide
80 cm diameter Pixelated detectors |

50 cm gap

Cylindrical long AFOV PET Walk-Through Total-Body PET
(Siemens Quadra) (WT-TB-PET)

» Detectors much closer to patient
= Smaller footprint

» Fewer detectors with same AFOV
= 1.9x less detector surface

= Lower system cost

Monolithic detectors



PATIENT CENTERED DESIGN

_ (b) Anthropomorphic
measures

(a)

! /' space

The

: PATIENT-
prlzﬁ . CENTRED
| DESIGN

\‘ The task

| Head-to-thigh

PET scans

Fig. 1 (a) System design concept (b) Anthropomorphic measures (¢) Measures from CT of PET-CT patients

The user

Patient width

Sitting
height

Abdominal
depth

Shoulder

breadth

—>

(@) (b)

70 cm wide
4+——>

] y\io cm gap

1T

[ } 1 module = 14 x 5 array
‘ of detector blocks

= 4 modules

BGO-based monolithic detector

G‘r'nm 8x8 SiPM array

Fig. 2: (a) Artist view of the Walk-Through TB-PET (b) Flat panel dimensions and design (c¢) One side of the
mock-up with the handlebars installed to reduce the body motion. (d) Side view of the WT-TB-PET mock-up
used for patient throughput measurements. Prints of feet are used to let the patient position themself between the

flat panels. (e) The four blue modules on each panel side can manually be adjusted to the right height.



2-3 x better spatial resolution

COMPARISON QUADRA VS WT-PET

WT-PET Quadra (322 MRD)
14 14
12 - 12 -
50 cm gap = 10- = 10- =
+/- 260 degrees 50 cm gap 2 . % 8 ~§E«
: T 6 T 6 I
Oopening 216 degrees e e é : : =
L Lo L
.0. ',‘ - .0. 2 2
’o @ .;",.. : .. 0 T T T 0 T T T
*s oy o 0 100 200 300 400 0 100 200 300 400
JRE d (mm) d (mm)
., g 0..
RN 18 18
106cm K A0\Ws
el e & 15 15 -
55 1&°8 E12- E12- E
i | E E E
length s : s 9- s 9- =
LS S 6- : = 6- %
@ W ol
.. b\ ". 3_ 3_
Nt #h L=70 cm 0 T T 0 T T |
.0. - - O 0 100 200 300 400 0 100 200 300 400
’.o : . ’.’ d (mm) d (mm)
> o :
i D= 85 cm diameter
——radial -+ tangential -+ axial

360 degrees

D= 85 cm diameter
+/- 204 degrees

Fig. 3: Comparison between the Siemens Vision Quadra design in blue and the Walk-Through TB-PET design

in green.

Excellent spatial resolution:
« High intrinsic resolution of monoliths
i « 6 layer DOI

GHENT . . o
UNIVERSITY Large opening angle in transverse and axial direction

Comparable sensitivity

Bio_Vis_Quadra

150+
100

50/

50 X 50 X 16 mm~"3
Walk_Through_PET

Sensitivity_profile

g 240r

4

% 220
200
180
160
140
120
100

80,
60,
40
20,

[T TP T[T T T[T T T[T T[T T[T T [T IT[TIT[TTT]

Entries 1605511

Std Dev 16.17

T B B A B T BB A B
-30 -20 -10 0 10 20




FULL SYSTEM SIMULATION/RECON

GATE MC-SIM RECON
Xcat 3 MBq/kg - 56 kg

Transverse/coronal/Sagittal slice show

TOF-listmode ML-EM : :
1m72 cm height \ > i voxels excellent contrast/image quality
Lesions of 10, 7 and 5 mm 327 ps

8:1 contrast
30 sec stationary acquisition !!

120 M detected Trues

10 iterations

Two opposed panels with
280 Monolithic BGO Blocks

Monolithic BGO block
size:50x50x16 mm
1.3 mm intrinsic resolution

2 mm DOI
16 mm
8x8 ( ........... )..‘ .....
SiPM array .............
m ...................... B
:
S ,
.(;Qy ....... é I/
‘ ..... ,I/
L
- 50 cm gap, 70 cm /!
SHF\/NI::I-RS”Y wide,106 cm high
Gate Simulations | M-MLEM Julia-GPU Some limited angle artefacts 38

Meysam Dadgar Jens Maebe close to detectors



@ LIMITED ANGLE EFFECTS
TO THE
RESCUE
limited . nput:
/ projection angles =T Approaches ﬁXEdM_PETconﬁ.guratlon
Sinogram completion with %
d % e Fourier methods
artifact removal in ™ 4
image domain Deep learning based image
"""""""""""""" restoration

Learn from image pairs of
complete/incomplete data

artifact removal in Deep learning image
projection domain restoration inside recon

Target:
rotating WT-PET configuration

\- J \
\ nl
\ /
\ /
\ /
— \ /!
i . .
— o ) Training pairs
GHENT | Rl . .
UNIVERSITY First results for from simulations

IEEE MIC 2023

Jens Maebe % Deep Learning/-CNN

7

7

DL artefact corrected image




BENEFITS OF WALK-THROUGH PET

|

|| | Patient throughput

Lower cost 1 Avoids patient positioning+
BGO is 1/3 price of L(Y)SO g . P 7
. < ‘ > scout-view and CT
BGO: 30 % more coincidences | Aim-
SE0 2xworse TOF " PET in breath-hold of 30 sec

Close to the patient —

Patient throughput of 3-5 min
1.9 x Less detectors

Very compact footprint / - i
About 2-4 m2 |

Semi-mobile l Less personnel

More space for patients in dept Most patients can position
themselves

Spatial resolution
Monolithic detectors

Uniform over whole FOV

Disadvantages
-layer DOI
T thanks to 6 aye O No anatomical CT quality

i _ _
GH_ENT Less motion of patient How to scan bedridden patients?

UNIVERSITY WIP @




TO THE

RESCUE
®
&
) . :
i
Joint Ugent-UPENN PhD
Florence Marie Muller
To Be checked
. ‘ Robustness ?
Other objects ?
DL-generated Quantitative
transmission reconstruction
Input-output traini mage
Nput-output trainin
.p P J Using domain knowledge for robust and generalizable
—_— Pairs of NAC-PET and deep learning-based CT-free PET attenuation and
i CT of patients scatter correction
G H E NT Rui Guo, Song Xue, Jiaxi Hu, Hasan Sari, Clemens Mingels, Konstantinos Zeimpekis, George Prenosil,
U N IV E R S ITY Yue Wang, Yu Zhang, Marco Viscione, Raphael Sznitman, Axel Rominger, Biao Li & & Kuangyu Shi

Nature Communications 13, Article number: 5882 (2022) | Cite this article




TOTAL COST OF OWNERSHIP IS KEY

— PET scanner is more than acquisition cost & service contract

* Throughput!
» Daily tracer/radiopharmacy costs
* Personnel cost + hospital space

-> Average cost per (quality) scan is what ‘counts’
(Physicists think too often it are the number of counts or TOF that ‘counts’)

AUDI A4
Quoted Price Higher lease cost
488 £ 3 But lower consumption
Energy Cost :
L 118 ¢ and service costs
[T} e and higher resell value

GHENT
onversity 607 £

2022 Tesla Model 3
@ Electric Luxury Vehicle

Tesla Model 3 SR+

Quoted Price

520 £

Energy Cost

39£
TCO Price

559 £
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HOW TO ESTIMATE EXPECTED THROUGHPUT ?

CH

de Liege

Mockup measurments

Florence Muller,

patient-centered design for high
throughput imaging at lower cost using
DOI-capable high-resolution monolithic
detectors

Original Article | Openaccess | Published: 19 July2023 | 50,3558-3571(2023)

Download PDF ¥ @ You have full access to this open access article

Stefaan Vandenberghe &, Florence M. Muller, Nadia Withofs, Meysam Dadgar, Jens Maebe, Boris

Vervenne, Maya Abi Akl, Song Xue, Kuangyu Shi, Giancarlo Sportelli, Nicola Belcari, Roland Hustinx,

Christian Vanhove & Joel S. Karp

\ Steps in this process
One day of recording : : . : . . - Fm\ »
. . 1. Measure throughput in a real setting on an existing Siemens Vision prt
on Siemens Vision at -
CHU-Liege 2. Simulate systems to determine sensitivity difference &Y
Average PET 3. Use Simulated sensitivity + TOF to predict scan times on other systems m { d
SEIEITS 2 SRS 4. Estimate setup/transfer time of WT-PET with a mockup Gate Simulations
times for 3MBq/kg _ . Meysam Dadgar
Prof N.Withofs sl 5. Calculate throughput based on PET scan times and setup/transfer time I
NM CHU / 6. Calculate the component cost of systems (based on quotes) ,'
‘. 7. Calculate how much tracer is required to inject all patients ,' ,
AN * Account for time between patients |' )
i «  Account for decay : )
\ ) /

System config N SAFOV LSO 210 ps |LAFOV (limited) LSO 210 ps |LAFOV LSO 210 ps WT-PET BGO §1-00 ps

Sensitivity \‘ 15 kcps/MBg 83 kcps/MBg 176 kcps/MBg 152 kcps/MBg

PET acquisition time /600 sec 108 sec 51 sec 112 sec

Time for Transfer/setup/CT 420 sec 420 sec 420 sec 210 sec v

# of possible scans in 8hr 28 54 61 89

Relative cost of PET system 1 4 4 1.4

Reduction in tracer cost vs SAFOV |0% 39 % 46 % 66 %

Walk-through flat panel total-body PET: a WT-PET

2.85 x lower component cost than Quadra
Lower sensitivity + TOF than Quadra
But has potential to scan

* 1.3 x more patients than Quadra
« 3.1 x more patients than Vision

At 66% lower dose cost/patient than Vision
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ONGOING WORK: STANDING MOTION CHALLENGE

Support from back + handle bars

Projection from back - instruct minimal motion
Scan fast (30 sec) to minimize motion
Camera to capture patient motion
Track motion during 30 sec
IR markers on head/shoulders/chest/abdomen

Normal breathing vs

Mean distance averaged over all participgg%:s

35, HEE Normal Breathing
m Breath Hold T

E 3.0 0.70
0 2.5
4 0.65
5 0.64
= 2.0
2 T
(a]
g 1.57 0.48
© Sl
@ 1.0 T
> 1
2 l 1

0.5 -

0.0 : . . :

Head Left Shoulder Right Shoulder Chest Abdomen

P Y e
- - o
- w3 ‘ifg ; «§ \

PhD Rabia Aziz: Al for motion correction



FIRST DESIGN CONCEPTS

SHORT THROW BEAMER

FOCVS POINT
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Project timing (2022-2025)  sccorscraesin  oras20%8.

Simulations & Recon& Motion
Q1-Q4 2023 1
M
Concept & & |
Early tests . |
Q3-Q4 2022 g
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$.2 ST Engineering
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OVERVIEW

Al will be employed into the entire imaging pipeline.

Acquisition Reconstruction Analysis Diagnosis
DL for TOF
and positionin CNN for ultrafast Image
P J reconstruction Efficient reporting

denoising

Motion detection and corrections

N

GHENT Gains in chain may enhance each other > Faster molecular imaging systems



— Upgrading every car to a Ferrari

T .
— does not solve traffic jams
GHENT

UNIVERSITY

PATIENT
INSTRUCTIONS

CLINICAL IMAGING
GUIDELINES

PATIENT
PREPARATION

AUTOMATED
DISPENSING

ACQUISITION

IMAGE
RECONSTRUCTION

FDG PRODUCTION

DOSE-TRACKING AND
IMAGE ANALYTICS

R

P ‘ &

\*,
fa(

e [ J
INTERPRETATION
AND REPORTING

Not only scanner but whole chain needs optimization
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TO THE
RESCUE

Long term vision:
Make nuclear medicine more efficient, less personnel, more accurate and lower cost

Acquisition Reconstruction Analysis Diagnosis

Filtering Backprojection

Sif ('Iheck.-l?‘ ‘ Deep Learning Sinogram (T§ able welghts )§(F xed wel ghtﬁ Reconstructed image
Kiosk ¥ | SU— E ¥ Large Le}nguage
positioning : Models in Healthcare
CNN denoising Gaeogoaﬁ
, 60 30

T | =T 002 “macm
GHENT - i gl Image-based CNN N £ c %o & ° & o
UNIVERSITY T N . 06 Linns go




Shifting tasks of nuclear medicine physicists

Manual quality control

GHENT
UNIVERSITY

Human
Only

e

Shadow
Mode

EIIIINEs

A.l
Assistance

EIIIINES

Partial
Automation

EIIINES

Full
Automation

EIIINEs

Voxel based
dosimetry

Data exchange with
other departments)
(Radiotherapy, radiology,
oncology..)



Shifting tasks of nuclear medicine physicians Patient care

Patient care Human ‘ "3:‘ " 1
. W\ X
: P “ = ¥ // ﬁ

Only

,@ Q S -
W Testing/learning to use Al

i r\&-""‘ / I/W O
= AR b Shadow ; Al feedback

Mode Failed Al
Readingscans || BOE ety By @®m ~ -~ AN

/

DDDDDD

___________

Partial
Automation

EINIINES

Full
s Automation

GHENT Sl

UNIVERSITY




SUMMARY/DISCUSSION

* Al has the potential to speed up imaging and impact system design

« Quite safe and predictable for simple tasks (positioning, denoising)

« Al seems to be used gradually in reconstruction and denoising (CT, MRI, PET, SPECT)
e Future higher throughput/low-cost design based on Walk-Through PET with Al

« Al can/should be used for diagnosis/prediction but carefully especially for complex tasks

« Clear standardized training data with gold standard for training are key for further progress

Al-powered object detection just identified
the longest cow on earth

Cow 2
Heightt 1i¥ meter - 7
Lengthi 5.2 metep

Al Al is like a complex toolbox/equalizer
with many knobs and settings

h TOOLBOX to train input to output, it does it faster

and probably better but maybe also

sometimes worse and unpredictable.
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Possible future
for efficient NM

 Patient preparation/injection
« Walk to waiting rooms
» Video instructions for patient scan
 Patients walk in the scanner.
Fast positioning and acquisition
High throughput
Fast deep learning based

* Image reconstruction

* Motion correction




FUTURE WORK: ADD DIAGNOSTIC CT W VAREX

Making the Invisible Visible
— PhD Boris Vervenne (1st october 2023)
— Design CT scanner for
* Scanning torso while patients are standing upright
« Sufficiently fast (< 1min for full torso)
Reliable detector technology

WT [|PET

THE FAST LANE

1. PET acquisition 2. Sideways transfer 3.CT acquisition
of patient cabinet
A ] I
Motion platfor m (‘, (‘,
] 1 T
W w WT-PET o
0.2 km/hr

about 10 s for 50 cm 95




MOTION: LEAN BACK AGAINST SURFACE CHY/

de Liege

» Kinect camera

» IR markers are positioned: on shoulders,
on glasses (head), chest level, abdomen - -

» Record in x (left-right), y (front-back), z | © Mockup measumenis

Florence Muller, Jens Maebe, Nadia WIthhofs,

(vertical)
x-movement (left-right) // Volunteers
. B =~ I = Stand Straight
O L Stand Straight (BH)
< W 2 wm Lean Back
i W, = Lean Back (BH)
E 1,5
E
L . . b
Motion in standing position 1
- Limited due to short 30 s scan
- Mostly head forward and back 0,5 I
_ 0 in =
A head shoulder chest
GHENT

UNIVERSITY 56



