

Jef Vandemeulebroucke

MEDICAL IMAGE ANALYSIS GROUP AT VUB COMPUTER-AIDED DIAGNOSIS & THERAPY

Motion analysis of joints

4D perfusion and angiography

Tumour segmentation from wholebody imaging

AR for surgical navigation

Intraoperative measurements

Sparse reconstruction for guidance

Surgical skill assessment

TYPICAL TASKSMEDICAL IMAGE ANALYSIS

Image Classification

Liver metastases

Object Detection

Semantic Segmentation

Liver metastases No metastasis

Instance Segmentation

🔲 Metastasis 1 🔲 Metastasis 2 📕 Metastasis 3 📕 Metastasis 4

Image Classification: Predicting the class or label of an entire image

Object Detection: Identification and localization of an entity

of interest in an image

Semantic Segmentation: Assigning each pixel in an image to a specific class

Instance Segmentation: Pixel-level detection and delineation of objects within the same class

Deep Learning: An Update for Radiologists. Cheng *et al.,* RadioGraphics 2021

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

OTHER TASKS

RELEVANT FOR MEDICAL IMAGE ANALYSIS

Denoising

Super-Resolution

WHAT IS ARTIFICIAL INTELLIGENCE?

AI, ML & DL

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

MEDICAL IMAGE ANALYSIS HAS BEEN THROUGH A REVOLUTIONDEEP LEARNING IS THE NEW DOMINATING METHODOLOGY

Over the last 5-7 years

- Complete change of methods, workflow and challenges
- Huge increase in performance
- Huge increase in community

OVERVIEW OUTLINE OF THIS TALK

A brief history of medical image analysis

- Typical tasks in medical image analysis
- ▶ From rule-based image processing, over ML to DL*

Where are we now?

- Current performance
- Challenges

Outlook

- ► The role of doctors in AI for medical imaging
- Novel innovations on the horizons

BRAIN TUMOUR SEGMENTATION RULE-BASED IMAGE PROCESSING ('80-'00)

A simplified example

- Segment the *skull*
- For all voxels inside the *skull*

	Features		Rules
► If:	intensity on FLAIR	> X	AND
<pre> If: If: If:</pre>	intensity on T2 intensity on T1c	> Y > Z	OR

- Then: add to *tumour*Else: add to *background*
- Fill holes in *tumour*

RULE-BASED IMAGE PROCESSING PRO'S AND CON'S

Rule-based approaches leads to very intuitive, easy to understand processing

- Typically achieved 60%-70% accuracy
- Mimicking the MD's reasoning

Complex and time-consuming to make

- Each problem requires another set of expert rules
- Difficult translate medical knowledge into mathematics & code
 - ► How to fix appropriate values for X, Y & Z?

	Features		Rules
► If:	intensity on FLAIR	> X	AND
<pre> If: If: If:</pre>	intensity on T2 intensity on T1c	> Y > Z	OR

BRAIN TUMOUR SEGMENTATION

MACHINE LEARNING USING HAND-CRAFTED FEATURES ('00-'10)

1) Extract large amount of features

2) Train a classifier on a set of annotated images

SUPERVISED LEARNING LEARNING FROM EXAMPLES

Given

- Examples of a function
 - $\blacktriangleright (X, F(X))$

Predict

- ► *F*(*X*) for new examples *X*
 - **b** Discrete F(X) : Classification
 - **Continuous** F(X) : Regression
 - \blacktriangleright F(X) = Probability(X): Probability estimation

SUPERVISED LEARNING BASIC PRINCIPLE

Build a mathematical model of sample data

• Known as "training data"

Use this model to make predictions or decisions on other, unseen data

• Testing data (or real-world data)

Predictions or decisions are made without being explicitly programmed to perform the task

• They are inferred from the data

Validation set: tune the model hyperparameters

BRAIN TUMOUR SEGMENTATION

MACHINE LEARNING USING HAND-CRAFTED FEATURES ('00-'10)

More powerful approach for medical image analysis

- Achieves 75%-80% accuracy
- ML allows to learn how features should be taken into account
 - You learn the rules from data

The "magic" is in the features

- Features are handcrafted for the considered task
- Designing your features is more of an art than a science

Example: radiomics

LARGE SCALE VISUAL RECOGNITION CHALLENGE

IMAGENET

Held for the first time in 2010

Data available for training:

- ~1M annotated images
- ~1k object classes

Task of the challenge

Classify each image to one of the 1000 object classes

IMAGENET

PERFORMANCE OVER TIME

Rapid progression of performance

- First deep methods in 2012
- Models outperforming humans by 2015

BRAIN TUMOUR SEGMENTATION

THE BRATS CHALLENGE

The medical domain soon followed

- Breakthrough results in 2013
- Whole tumour reaches over 90% Dice in current challenges

BRAIN TUMOR SEGMENTATION DEEP LEARNING USING CNN ('10-'20)

CONVOLUTION NEURAL NETWORKS WHY CONVOLUTIONS?

Convolutional neural network (CNN)

- Neural network with some convolutional layers (and some other layers)
- ► A convolutional layer corresponds to applying a number of filters

CONVOLUTION NEURAL NETWORKS WHY (MAX) POOLING?

- Subsampling pixels will not change the overall appearance of the object
- Max pooling can be seen as a rough subsampling of the feature map
 - Dimensionality reduction

BRAIN TUMOR SEGMENTATION DEEP LEARNING USING CNN ('10-'20)

BRAIN TUMOUR SEGMENTATION

MACHINE LEARNING USING HAND-CRAFTED FEATURES ('00-'10)

More powerful approach for medical image analysis

- Achieves 75%-80% accuracy
- ML allows to learn how features should be taken into account
 - You learn the rules from data

The "magic" is in the features

- Features are handcrafted for the considered task
- Designing your features is more of an art than a science

Example: radiomics

BRAIN TUMOUR SEGMENTATION DEEP LEARNING USING CNN ('10-'20)

Breakthrough performance for medical image analysis

- Achieves 90%-97% accuracy
- Very generic method, same method applied to large variety of problems
 - Very little domain knowledge required for getting good results

Downsides

- As-is, offers little insight on "why is this tumour?"
- Training computationally very expensive, requiring specific hardware
- Requires large amounts of annotated data

energy Insurance driverless cars Internet of T Finlech_tac Service Istic lactur analy detecting der 00 RegTech quality contro eech recognitio gital marketin manuf financial *edictive* ď

OVERVIEW OUTLINE OF THIS TALK

A brief history of medical image analysis

- ► Typical tasks in medical image analysis
- ▶ From rule-based image processing, over ML to DL

Where are we now?

- Current performance
- Challenges

Outlook

- ► The role of doctors in AI for medical imaging
- Novel innovations on the horizons

THE FIRST DECADE OF DEEP LEARNINGAN INCOMPLETE OVERVIEW

GANs competing networks improve each other

2014

Self-supervised learning genesis, contrastive learning

Visual Transformers Outperforming CNNs

CNNs AlexNet, VGG16, GoogLeNet

U-Net for image segmentation

2016

2018

Contracting provided and approximation
Contracting provided

nnU-Net a selfconfiguring U-Net 2020

2022

Generative models generate realistic images (even from text)

THE NEW WORKFLOW IN THE DEEP LEARNING ERA

01-06-2024 | 27

COVID-19

0.87 AUC

To support the severity scoring Image segmentation Delineate COVID lesions within the CT image

Lung involvement

<50ml error

0.80 AUC

Working segmentation within 3 weeks, and (preliminary) certified in 6 weeks

MEASURING PERFORMANCE CAN BE TRICKY

HIDDEN STRATIFICATION

Learning from imbalanced data He *et al.* IEEE Transactions on Knowledge and Data Engineering, 2009

Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging Oakden-Rayner *et al.* Conf Health Inference Learn, 2020

AI in Medical Imaging 01-06-2024 | 29

Performance largely depends on your data

RISK OF BIAS COVID-19

The domain needs to mature and adopt tools for bias assessment and reporting

- PROBAST
- TRIPOD

Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. Wynants L., et al. BMJ (2020)

- "Thirty three diagnostic models were identified for detecting covid-19, in addition to 75 diagnostic models based on medical images, 10 diagnostic models for severity classification, and 107 prognostic models for predicting, among others, mortality risk, progression to severe disease"
- Proposed models are poorly reported and at high risk of bias, raising concern that their predictions could be unreliable when applied in daily practice"
- "We cannot yet recommend **any** of the identified prediction models for widespread use in clinical practice"

OVERVIEW OUTLINE OF THIS TALK

A brief history of medical image analysis

- Typical tasks in medical image analysis
- From rule-based image processing, over ML to DL

Where are we now?

- Current performance
- Challenges

Outlook

- The role of doctors in AI for medical imaging
- Novel innovations on the horizons

WILL WE GO THROUGH A NEW AI WINTER? A PERIOD FOLLOWING DELILLUSIONEMENT

It seems unlikely, as AI seems to bring value, this time..

An example from United Imaging (Shanghai, China)

- Full stack: AI along the entire pipeline
- Full spectrum: all modalities

WILL AI REPLACE THE MD?NO, BUT IT WILL IMPACT THE WAY OF WORKING

"Artificial intelligence will not replace the radiologist . Rather, radiologists who do not embrace AI will be replaced by those who do" President of the American Radiological Associations The real challenge is how to integrate AI in the workflow

- We mainly think about improving sensitivity
 - Double reading: AI+MD
- CAD systems are using MDs to optimize **specificity**
 - Alert fatigue
- Our health economic situation is pushing us to improve **efficiency**
 - Where do we trust AI?

AI FOR BUT ALSO BY MDS

CO-DEVELOPMENT

Medical practitioners will be actively involved in the entire process

- Data curation considering stratification
- AI-assisted annotation and labelling

Deep learning will be enhanced by medical domain knowledge

- Improve performance & stability
- Including uncertainty & explainability

Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance Rudie *et al.* J Digit Imaging. 2021

SELF-SUPERVISION FOR MEDICAL DATA

TOWARDS MULTI-MODAL CLINICAL FOUNDATION MODELS

Multi-modal medical foundation models

Shaoting Zhang & Dimitris Metaxas, On the challenges and perspectives of foundation models for medical image analysis, Medical Image Analysis, 2024.